← Back

Translation

Topic spotlight
TopicWorld Wide

translation

Discover seminars, jobs, and research tagged with translation across World Wide.
78 curated items60 Seminars14 ePosters3 Positions1 Conference
Updated 1 day ago
78 items · translation
78 results
Position

Anjela Pastor

DhuMall
Australia, Denmark, France
Dec 5, 2025

We are looking for self-motivated, disciplined, and qualified freelancers

Position

Professor Stuart Allan

The University of Manchester
Manchester, UK
Dec 5, 2025

Applications are invited for the Natalie Kate Moss (NKM) Research Fellowship in Brain Haemorrhage, aimed at an outstanding scientist at an early stage in their academic career (i.e. within seven years of PhD submission). The NKM Fellow should show a high level of drive and ambition in their ideas relating to the study of brain haemorrhage. Working within the newly established Geoffrey Jefferson Brain Research Centre (www.ncaresearch.org.uk/gjbrainresearch/) the NKM Fellow will benefit from a vibrant and inspiring environment to pursue outstanding research. The NKM Fellow will be mentored and given all appropriate assistance in winning external funding and awards. The NKM Fellow will receive full-time salary for 3.5 years, £100k research support costs, immediate co-supervision of a PhD student (dependent on experience) and access to key technology platforms. The post is available from 1st February 2022. https://www.jobs.manchester.ac.uk/displayjob.aspx?isPreview=Yes&jobid=21061

Position

Dr Emily Osterweil

University of Edinburgh
Edinburgh, United Kingdom
Dec 5, 2025

The Osterweil lab is recruiting a motivated individual to fill a postdoctoral position in cellular neuroscience and bioinformatics. You will be joining the exceptional group of scientists in the Centre for Discovery Brain Sciences and the Simons Centre for the Developing Brain at the University of Edinburgh, recently ranked as the 16th best university in the world. You will be working in Edinburgh, one of the world’s most liveable cities with access to world-class cultural activities, UNESCO Heritage sites and unparalleled outdoor experiences. The laboratory’s research sits at the interface of cellular neuroscience and disease, seeking to address the role of mRNA translation in autism-related neurodevelopmental disorders. You will use cutting edge approaches such as TRAP-seq, Ribo-seq and scRNA-seq to discover how alterations in specific neural circuits contribute to disruptions in circuit function and behavior in animal models of autism. This Wellcome Trust funded position will use these approaches to answer critical questions about how ribosome expression changes mRNA translation in hippocampal and cortical circuits, and how this process may be targeted for therapeutic intervention in mouse models of autism. The post requires relevant experience in bioinformatics analysis of RNA-seq datasets, and experience with scRNA-seq datasets is desired. Candidates must have a PhD in cell biology, neuroscience or a related topic either obtained or expected within 6 months of the start of the contract. This is a full-time post, and start date is flexible. Applications will be reviewed on a rolling basis with a soft deadline of Aug 21. Interested applicants should send a CV and letters of reference to Emily.osterweil@ed.ac.uk. Lab website: https://www.osterlab.org/ University of Edinburgh: https://www.ed.ac.uk/ Simons Centre for the Developing Brain: https://www.sidb.org.uk/ Centre for Discovery Brain Sciences: https://www.ed.ac.uk/discovery-brain-sciences Further Reading 1) Thomson SR*, Seo SS*, Barnes SA✝, Louros SR✝, Muscas M, Dando O, Kirby C, Hardingham GE, Wyllie DJA, Kind PC, and Osterweil EK. Cell type-specific translation profiling reveals a novel strategy for treating fragile X syndrome. Neuron. 2017 Aug 2; 95(3):550-563.e5. doi: 10.1016/j.neuron.2017.07.013. 2) Stoppel LJ, Osterweil EK, and Bear MF. The mGluR Theory of fragile X syndrome. Fragile X Syndrome: From Genetics to Targeted Treatment. Willemsen, R. & Kooy, F. (Eds.). Academic Press, 2017. ISBN: 0128045078, 9780128045077. 3) Asiminas A*, Jackson AD*, Louros S†, Till SM†, Spano T, Dando O, Bear MF, Chattarji S, Hardingham GE, Osterweil EK, Wyllie DJA, Wood ER, and Kind PC. Sustained correction of associative learning deficits following brief, early treatment in a rat model of Fragile X Syndrome. Science Translational Medicine. 2019 May 29;11(494). pii: eaao0498. doi: 10.1126/scitranslmed.aao0498.

SeminarNeuroscience

The tubulin code in neuron health and disease : focus on detyrosination

Marie-Jo Moutin
Grenoble Institute Neurosciences, Univ Grenoble Alpes, Inserm U1216, CNRS
Oct 9, 2025
SeminarNeuroscience

Astrocytes release glutamate by regulated exocytosis in health and disease

Vladimir Parpura
Distinguished Professor Zhejiang Chinese Medical University and Director of the International Translational Neuroscience Research Institute, Hangzhou, P.R. China
Jun 4, 2025

Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.

SeminarNeuroscience

Decoding ketamine: Neurobiological mechanisms underlying its rapid antidepressant efficacy

Zanos Panos
Translational Neuropharmacology Lab, University of Cyprus, Center for Applied Neurosience & Department of Psychology, Nicosia, Cyprus
Apr 3, 2025

Unlike traditional monoamine-based antidepressants that require weeks to exert effects, ketamine alleviates depression within hours, though its clinical use is limited by side effects. While ketamine was initially thought to work primarily through NMDA receptor (NMDAR) inhibition, our research reveals a more complex mechanism. We demonstrate that NMDAR inhibition alone cannot explain ketamine's sustained antidepressant effects, as other NMDAR antagonists like MK-801 lack similar efficacy. Instead, the (2R,6R)-hydroxynorketamine (HNK) metabolite appears critical, exhibiting antidepressant effects without ketamine's side effects. Paradoxically, our findings suggest an inverted U-shaped dose-response relationship where excessive NMDAR inhibition may actually impede antidepressant efficacy, while some level of NMDAR activation is necessary. The antidepressant actions of ketamine and (2R,6R)-HNK require AMPA receptor activation, leading to synaptic potentiation and upregulation of AMPA receptor subunits GluA1 and GluA2. Furthermore, NMDAR subunit GluN2A appears necessary and possibly sufficient for these effects. This research establishes NMDAR-GluN2A activation as a common downstream effector for rapid-acting antidepressants, regardless of their initial targets, offering promising directions for developing next-generation antidepressants with improved efficacy and reduced side effects.

SeminarNeuroscience

Development of a small molecule to promote neuroprotection and repair in progressive multiple sclerosis

Petratos Steven
Department of Neuroscience / School of Translational Medicine Monash University, Australia
Jul 7, 2024
Conference

FENS Forum 2024

Messe Wien Exhibition & Congress Center, Vienna, Austria
Jun 25, 2024

Organised by FENS in partnership with the Austrian Neuroscience Association and the Hungarian Neuroscience Society, the FENS Forum 2024 will take place on 25–29 June 2024 in Vienna, Austria:contentReference[oaicite:0]{index=0}. The FENS Forum is Europe’s largest neuroscience congress, covering all areas of neuroscience from basic to translational research:contentReference[oaicite:1]{index=1}.

SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 15, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 27, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscience

The glutamatergic synapse in mental disorder pathology - translational studies on molecular mechanisms

Florian Freudenberg
University of Frankfurt
Nov 15, 2023
SeminarNeuroscienceRecording

Virtual Brain Twins for Brain Medicine and Epilepsy

Viktor Jirsa
Aix Marseille Université - Inserm
Nov 7, 2023

Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscience

Translational Research in Tuberous Sclerosis as a Model for Autism and Epilepsy

Mustafa Sahin
Boston Children's Hospital & Harvard University
Jun 13, 2023
SeminarNeuroscienceRecording

Immunosuppression for Parkinson's disease - a new therapeutic strategy?

Caroline Williams-Gray
Department of Clinical Neurosciences, University of Cambridge
May 29, 2023

Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.

SeminarNeuroscience

Euclidean coordinates are the wrong prior for primate vision

Gary Cottrell
University of California, San Diego (UCSD)
May 9, 2023

The mapping from the visual field to V1 can be approximated by a log-polar transform. In this domain, scale is a left-right shift, and rotation is an up-down shift. When fed into a standard shift-invariant convolutional network, this provides scale and rotation invariance. However, translation invariance is lost. In our model, this is compensated for by multiple fixations on an object. Due to the high concentration of cones in the fovea with the dropoff of resolution in the periphery, fully 10 degrees of visual angle take up about half of V1, with the remaining 170 degrees (or so) taking up the other half. This layout provides the basis for the central and peripheral pathways. Simulations with this model closely match human performance in scene classification, and competition between the pathways leads to the peripheral pathway being used for this task. Remarkably, in spite of the property of rotation invariance, this model can explain the inverted face effect. We suggest that the standard method of using image coordinates is the wrong prior for models of primate vision.

SeminarNeuroscienceRecording

Neurobiological significance of alternative modes of mRNA translation in astrocytes

Darshan Sapkota
UTDalles
Mar 15, 2023
SeminarNeuroscienceRecording

Integrative Neuromodulation: from biomarker identification to optimizing neuromodulation

Valerie Voon
Department of Psychiatry, University of Cambridge
Mar 6, 2023

Why do we make decisions impulsively blinded in an emotionally rash moment? Or caught in the same repetitive suboptimal loop, avoiding fears or rushing headlong towards illusory rewards? These cognitive constructs underlying self-control and compulsive behaviours and their influence by emotion or incentives are relevant dimensionally across healthy individuals and hijacked across disorders of addiction, compulsivity and mood. My lab focuses on identifying theory-driven modifiable biomarkers focusing on these cognitive constructs with the ultimate goal to optimize and develop novel means of neuromodulation. Here I will provide a few examples of my group’s recent work to illustrate this approach. I describe a series of recent studies on intracranial physiology and acute stimulation focusing on risk taking and emotional processing. This talk highlights the subthalamic nucleus, a common target for deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder. I further describe recent translational work in non-invasive neuromodulation. Together these examples illustrate the approach of the lab highlighting modifiable biomarkers and optimizing neuromodulation.

SeminarNeuroscienceRecording

Sampling the environment with body-brain rhythms

Antonio Criscuolo
Maastricht University
Jan 24, 2023

Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?

SeminarNeuroscienceRecording

Can we have jam today and jam tomorrow ?Improving outcomes for older people living with mental illness using applied and translational research

Ben Underwood
Department of Psychiatry, University of Cambridge
Jan 16, 2023

This talk will examine how approaches such as ‘big data’ and new ways of delivering clinical trials can improve current services for older people with mental illness (jam today) and identify and deliver new treatments in the future (jam tomorrow).

SeminarNeuroscienceRecording

Bridging the gap from research to clinical decision making in epilepsy neuromodulation; How to become an integral part of the functional neurosurgery team as a radiologist

Erik H. Middlebrooks, MD & Alexandre Boutet, MD, PhD
Mayo Clinic, Jacksonville, USA / University of Toronto, Canada
Nov 29, 2022

On Wednesday, November 30th, at noon ET / 6PM CET, we will host Alexandre Boutet and Erik H. Middlebrooks. Alexandre Boutet, MD, PhD, is a neuroradiology fellow at the University of Toronto, and will tell us about “How to become an integral part of the functional neurosurgery team as a radiologist”. Erik H. Middlebrooks, MD, is a Professor and Consultant of Neuroradiology and Neurosurgery and the Neuroradiology Program Director at Mayo Clinic. Beside his scientific presentation about “Bridging the Gap from Research to Clinical Decision Making in Epilepsy Neuromodulation”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Developmental disorders of presynaptic vesicle cycling - Synaptotagmin-1 and beyond

Kate Baker
MRC Cognition and Brain Sciences Unit, University of Cambridge
Nov 22, 2022

Post-diagnostic research on rare genetic developmental disorders presents new opportunities (and a few challenges) for discovery neuroscience and translation. In this talk, Kate will describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence pre-synaptic vesicle cycling (SVC disorders). She will focus on Synaptotagmin-1 Associated Neurodevelopmental Disorder (also known as Baker Gordon Syndrome), first described in 2015 and now diagnosed in more than 50 children and young people worldwide. She will then present work-in-progress by her group on the neurodevelopmental spectrum of SVC disorders more broadly, and discuss opportunities for collaborative neuroscience which can bridge the gaps between genetic cause and complex neurological, cognitive and mental health outcomes.

SeminarNeuroscience

Dysregulated Translation in Fragile X Syndrome

Eric Klann
New York University
Nov 8, 2022
SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 8, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscience

Functional and translational implications of A-to-I editing in brain development and neurodevelopmental disorders

Michael Breen
Icahn School of Medicine at Mount Sinai
Sep 20, 2022
SeminarNeuroscience

Integrating theory-guided and data-driven approaches for measuring consciousness

Nao Tsuchiya
Monash Institute of Cognitive and Clinical Neurosciences, Monash University
Aug 30, 2022

Clinical assessment of consciousness is a significant issue, with recent research suggesting some brain-damaged patients who are assessed as unconscious are in fact conscious. Misdiagnosis of consciousness can also be detrimental when it comes to general anaesthesia, causing numerous psychological problems, including post-traumatic stress disorder. Avoiding awareness with overdose of anaesthetics, however, can also lead to cognitive impairment. Currently available objective assessment of consciousness is limited in accuracy or requires expensive equipment with major barriers to translation. In this talk, we will outline our recent theory-guided and data-driven approaches to develop new, optimized consciousness measures that will be robustly evaluated on an unprecedented breadth of high-quality neural data, recorded from the fly model system. We will overcome the subjective-choice problem in data-driven and theory-guided approaches with a comprehensive data analytic framework, which has never been applied to consciousness detection, integrating previously disconnected streams of research in consciousness detection to accelerate the translation of objective consciousness measures into clinical settings.

SeminarPsychology

Heading perception in crowded environments

Anna-Gesina Hülemeier
University of Münster
Jun 14, 2022

Self-motion through a visual world creates a pattern of expanding visual motion called optic flow. Heading estimation from the optic flow is accurate in rigid environments. But it becomes challenging when other humans introduce an independent motion to the scene. The biological motion of human walkers consists of translation through space and associated limb articulation. The characteristic motion pattern is regular, though complex. A world full of humans moving around is nonrigid, causing heading errors. But limb articulation alone does not perturb the global structure of the flow field, matching the rigidity assumption. For heading perception from optic flow analysis, limb articulation alone should not impair heading estimates. But we observed heading biases when participants encountered a group of point-light walkers. Our research investigates the interactions between optic flow perception and biological motion perception. We further analyze the impact of environmental information.

SeminarNeuroscienceRecording

Sex Differences in Learning from Exploration

Cathy Chen
Grissom lab, University of Minnesota
Jun 7, 2022

Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless two-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get ‘stuck’ in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.

SeminarNeuroscience

Translation at the Synapse

Erin Schuman
Max Planck Institute for Brain Research, Germany
Jun 7, 2022
SeminarNeuroscience

PET imaging in brain diseases

Bianca Jupp and Lucy Vivash
Monash University
Jun 7, 2022

Talk 1. PET based biomarkers of treatment efficacy in temporal lobe epilepsy A critical aspect of drug development involves identifying robust biomarkers of treatment response for use as surrogate endpoints in clinical trials. However, these biomarkers also have the capacity to inform mechanisms of disease pathogenesis and therapeutic efficacy. In this webinar, Dr Bianca Jupp will report on a series of studies using the GABAA PET ligand, [18F]-Flumazenil, to establish biomarkers of treatment response to a novel therapeutic for temporal lobe epilepsy, identifying affinity at this receptor as a key predictor of treatment outcome. Dr Bianca Jupp is a Research Fellow in the Department of Neuroscience, Monash University and Lead PET/CT Scientist at the Alfred Research Alliance–Monash Biomedical Imaging facility. Her research focuses on neuroimaging and its capacity to inform the neurobiology underlying neurological and neuropsychiatric disorders. Talk 2. The development of a PET radiotracer for reparative microglia Imaging of neuroinflammation is currently hindered by the technical limitations associated with TSPO imaging. In this webinar, Dr Lucy Vivash will discuss the development of PET radiotracers that specifically image reparative microglia through targeting the receptor kinase MerTK. This includes medicinal chemistry design and testing, radiochemistry, and in vitro and in vivo testing of lead tracers. Dr Lucy Vivash is a Research Fellow in the Department of Neuroscience, Monash University. Her research focuses on the preclinical development and clinical translation of novel PET radiotracers for the imaging of neurodegenerative diseases.

SeminarNeuroscience

Translation at the Synapse

Erin Schuman
Max Planck Institute for Brain Research, Germany
May 31, 2022

The complex morphology of neurons, with synapses located hundreds of microns from the cell body, necessitates the localization of important cell biological machines, including ribosomes, within dendrites and axons. Local translation of mRNAs is important for the function and plasticity of synapses. Using advanced sequencing and imaging techniques we have updated our understanding of the local transcriptome and identified the local translatome- identifying over 800 transcripts for which local translation is the dominant source of protein. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying surprising features of neuronal and synaptic protein synthesis.

SeminarNeuroscience

Growing a world-class precision medicine industry

Prof Gary Egan and Dr Maggie Aulsebrook
Monash Biomedical Imaging
May 24, 2022

Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.

SeminarNeuroscienceRecording

Brain and behavioural impacts of early life adversity

Jeff Dalley
Department of Psychology, University of Cambridge
Apr 25, 2022

Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.

SeminarNeuroscienceRecording

Network science and network medicine: New strategies for understanding and treating the biological basis of mental ill-health

Petra Vértes
Department of Psychiatry, University of Cambridge
Mar 14, 2022

The last twenty years have witnessed extraordinarily rapid progress in basic neuroscience, including breakthrough technologies such as optogenetics, and the collection of unprecedented amounts of neuroimaging, genetic and other data relevant to neuroscience and mental health. However, the translation of this progress into improved understanding of brain function and dysfunction has been comparatively slow. As a result, the development of therapeutics for mental health has stagnated too. One central challenge has been to extract meaning from these large, complex, multivariate datasets, which requires a shift towards systems-level mathematical and computational approaches. A second challenge has been reconciling different scales of investigation, from genes and molecules to cells, circuits, tissue, whole-brain, and ultimately behaviour. In this talk I will describe several strands of work using mathematical, statistical, and bioinformatic methods to bridge these gaps. Topics will include: using artificial neural networks to link the organization of large-scale brain connectivity to cognitive function; using multivariate statistical methods to link disease-related changes in brain networks to the underlying biological processes; and using network-based approaches to move from genetic insights towards drug discovey. Finally, I will discuss how simple organisms such as C. elegans can serve to inspire, test, and validate new methods and insights in networks neuroscience.

SeminarNeuroscience

Emerging Treatment Options in Psychiatry

Erik Wong
University of British Columbia
Feb 27, 2022

The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.

SeminarNeuroscience

Translational Biomarkers in Preclinical Models of Neurodevelopmental Disorders

Jill Silverman
UC Davis
Jan 25, 2022
SeminarNeuroscience

Towards a More Authentic Vision of the (multi)Coding Potential of RNA

Xavier Roucou
Professor and Department Chair, Department of Biochemistry and Functional Genomics, Université de Sherbrooke & Canada Research Chair in Functional Proteomics and Discovery of Novel Proteins
Jan 17, 2022

Ten of thousands of open reading frames (ORFs) are hidden within transcripts. They have eluded annotations because they are either small or within unsuspected locations. These are named alternative ORFs (altORFs) or small ORFs and have recently been highlighted by innovative proteogenomic approaches, such as our OpenProt resource, revealing their existence and implications in biological functions. Due to the absence of altORFs from annotations, pathogenic mutations within these are being ignored. I will discuss our latest progress on the re-analysis of large-scale proteomics datasets to improve our knowledge of proteomic diversity, and the functional characterization of a second protein coded by the FUS gene. Finally, I will explain the need to map the coding potential of the transcriptome using artificial intelligence rather than with conventional annotations that do not capture the full translational activity of ribosomes.

SeminarNeuroscience

From bench to clinic – Translating fundamental neuroscience into real-life healthcare practices, and developing nationally recognised life science companies

Ryan D'Arcy
HealthTech Connex Inc.
Jan 11, 2022

Dr. Ryan C.N. D’Arcy is a Canadian neuroscientist, researcher, innovator and entrepreneur. Dr. D'Arcy co-founded HealthTech Connex Inc. and serves as President and Chief Scientific Officer. HealthTech Connex translates neuroscience advances into health technology breakthroughs. D'Arcy is most known for coining the term "brain vital signs" and for leading the research and development of the brain vital signs framework. Dr. D’Arcy also holds a BC Leadership Chair in Medical Technology, is a full Professor at Simon Fraser University, and a member of the DM Centre for Brain Health at the University of British Columbia. He has published more than 260 academic works, attracted more than $85 Million CAD in competitive research and innovation funding, and been recognized through numerous awards and distinctions. Please join us for an exciting virtual talk with Dr. D'Arcy who will speak on some of the current research he is involved in, how he is translating this research into real-life applications, and the development of HealthTech Connects Inc.

SeminarNeuroscience

Identification and treatment of advanced, rupture-prone plaques to reduce cardiovascular mortality

Stephen Nicholls and Kristen Bubb
Monash Biomedical Imaging
Nov 24, 2021

Atherosclerosis is the underlying cause of major cardiovascular events, including heart attack and stroke. The build-up of plaque in coronary arteries can be a major risk for events, but risk is significantly higher in patients with vulnerable rather than stable plaque. Diagnostic imaging of vulnerable plaque is extremely useful for both stratifying patient risk and for determining effectiveness of experimental intervention in reducing cardiovascular risk. In the preclinical setting, being able to distinguish between stable and vulnerable plaque development and pair this with biochemical measures is critical for identification of new experimental candidates. In this webinar, Professor Stephen Nicholls and Dr Kristen Bubb from the Victorian Heart Institute will discuss the benefits of being able to visualise vulnerable plaque for both clinical and preclinical research. Professor Stephen Nicholls is a clinician-researcher and the Head of the Victorian Heart Institute. He is the lead investigator on multiple large, international, cardiovascular outcomes trials. He has attracted over $100 million in direct research funding and published more than 400 peer-reviewed manuscripts. He is focused on both therapeutic intervention to reduce vascular inflammation and lipid accumulation and precision medicine approaches to prevent cardiovascular mortality. Dr Kristen Bubb is a biomedical researcher and Group Leader within the Monash Biomedicine Discovery Institute Cardiovascular Program and Victorian Heart Institute. She focuses on preclinical/translational research into mechanisms underlying vascular pathologies including atherosclerosis and endothelium-driven hypertension within specific vascular systems, including pulmonary and pregnancy-induced. She has published >30 high impact papers in leading cardiovascular journals and attracted category 1&2 funding of >$750,000.

SeminarPsychology

Consistency of Face Identity Processing: Basic & Translational Research

Jeffrey Nador
University of Fribourg
Nov 17, 2021

Previous work looking at individual differences in face identity processing (FIP) has found that most commonly used lab-based performance assessments are unfortunately not sufficiently sensitive on their own for measuring performance in both the upper and lower tails of the general population simultaneously. So more recently, researchers have begun incorporating multiple testing procedures into their assessments. Still, though, the growing consensus seems to be that at the individual level, there is quite a bit of variability between test scores. The overall consequence of this is that extreme scores will still occur simply by chance in large enough samples. To mitigate this issue, our recent work has developed measures of intra-individual FIP consistency to refine selection of those with superior abilities (i.e. from the upper tail). For starters, we assessed consistency of face matching and recognition in neurotypical controls, and compared them to a sample of SRs. In terms of face matching, we demonstrated psychophysically that SRs show significantly greater consistency than controls in exploiting spatial frequency information than controls. Meanwhile, we showed that SRs’ recognition of faces is highly related to memorability for identities, yet effectively unrelated among controls. So overall, at the high end of the FIP spectrum, consistency can be a useful tool for revealing both qualitative and quantitative individual differences. Finally, in conjunction with collaborators from the Rheinland-Pfalz Police, we developed a pair of bespoke work samples to get bias-free measures of intraindividual consistency in current law enforcement personnel. Officers with higher composite scores on a set of 3 challenging FIP tests tended to show higher consistency, and vice versa. Overall, this suggests that not only is consistency a reasonably good marker of superior FIP abilities, but could present important practical benefits for personnel selection in many other domains of expertise.

SeminarNeuroscience

An optimal population code for global motion estimation in local direction-selective cells

Miriam Henning
Silies lab, University of Mainz, Germany
Nov 3, 2021

Neuronal computations are matched to optimally encode the sensory information that is available and relevant for the animal. However, the physical distribution of sensory information is often shaped by the animal’s own behavior. One prominent example is the encoding of optic flow fields that are generated during self-motion of the animal and will therefore depend on the type of locomotion. How evolution has matched computational resources to the behavioral constraints of an animal is not known. Here we use in vivo two photon imaging to record from a population of >3.500 local-direction selective cells. Our data show that the local direction-selective T4/T5 neurons in Drosophila form a population code that is matched to represent optic flow fields generated during translational and rotational self-motion of the fly. This coding principle for optic flow is reminiscent to the population code of local direction-selective ganglion cells in the mouse retina, where four direction-selective ganglion cells encode four different axes of self-motion encountered during walking (Sabbah et al., 2017). However, in flies we find six different subtypes of T4 and T5 cells that, at the population level, represent six axes of self-motion of the fly. The four uniformly tuned T4/T5 subtypes described previously represent a local snapshot (Maisak et al. 2013). The encoding of six types of optic flow in the fly as compared to four types of optic flow in mice might be matched to the high degrees of freedom encountered during flight. Thus, a population code for optic flow appears to be a general coding principle of visual systems, resulting from convergent evolution, but matching the individual ethological constraints of the animal.

SeminarNeuroscience

Improving Communication With the Brain Through Electrode Technologies

Rylie Green
Imperial College London
Oct 27, 2021

Over the past 30 years bionic devices such as cochlear implants and pacemakers, have used a small number of metal electrodes to restore function and monitor activity in patients following disease or injury of excitable tissues. Growing interest in neurotechnologies, facilitated by ventures such as BrainGate, Neuralink and the European Human Brain Project, has increased public awareness of electrotherapeutics and led to both new applications for bioelectronics and a growing demand for less invasive devices with improved performance. Coupled with the rapid miniaturisation of electronic chips, bionic devices are now being developed to diagnose and treat a wide variety of neural and muscular disorders. Of particular interest is the area of high resolution devices that require smaller, more densely packed electrodes. Due to poor integration and communication with body tissue, conventional metallic electrodes cannot meet these size and spatial requirements. We have developed a range of polymer based electronic materials including conductive hydrogels (CHs), conductive elastomers (CEs) and living electrodes (LEs). These technologies provide synergy between low impedance charge transfer, reduced stiffness and an ability to be provide a biologically active interface. A range of electrode approaches are presented spanning wearables, implantables and drug delivery devices. This talk outlines the materials development and characterisation of both in vitro properties and translational in vivo performance. The challenges for translation and commercial uptake of novel technologies will also be discussed.

SeminarNeuroscienceRecording

Epigenetic regulation of alternative splicing in the context of cocaine reward

Elizabeth A Heller, PhD
The University of Pennsylvania, Penn Epigenetics Institute, Systems Pharmacology & Translational Therapeutics
Oct 5, 2021

Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.

SeminarNeuroscienceRecording

Seeing with technology: Exchanging the senses with sensory substitution and augmentation

Michael Proulx
University of Bath
Sep 29, 2021

What is perception? Our sensory modalities transmit information about the external world into electrochemical signals that somehow give rise to our conscious experience of our environment. Normally there is too much information to be processed in any given moment, and the mechanisms of attention focus the limited resources of the mind to some information at the expense of others. My research has advanced from first examining visual perception and attention to now examine how multisensory processing contributes to perception and cognition. There are fundamental constraints on how much information can be processed by the different senses on their own and in combination. Here I will explore information processing from the perspective of sensory substitution and augmentation, and how "seeing" with the ears and tongue can advance fundamental and translational research.

SeminarNeuroscienceRecording

Multisensory Integration: Development, Plasticity, and Translational Applications

Benjamin A. Rowland
Wake Forest School of Medicine
Sep 20, 2021
SeminarNeuroscienceRecording

Interpreting the Mechanisms and Meaning of Sensorimotor Beta Rhythms with the Human Neocortical Neurosolver (HNN) Neural Modeling Software

Stephanie Jones
Brown University
Sep 7, 2021

Electro- and magneto-encephalography (EEG/MEG) are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of E/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown/edu ), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. A unique feature of HNN’s model is that it accounts for the biophysics generating the primary electric currents underlying such data, so simulation results are directly comparable to source localized data. HNN is being constructed with workflows of use to study some of the most commonly measured E/MEG signals including event related potentials, and low frequency brain rhythms. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. Our data showed that in primary somatosensory cortex these oscillations emerge as transient high power ‘events’. Functionally relevant differences in averaged power reflected a difference in the number of high-power beta events per trial (“rate”), as opposed to changes in event amplitude or duration. These findings were consistent across detection and attention tasks in human MEG, and in local field potentials from mice performing a detection task. HNN modeling led to a new theory on the circuit origin of such beta events and suggested beta causally impacts perception through layer specific recruitment of cortical inhibition, with support from invasive recordings in animal models and high-resolution MEG in humans. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human E/MEG signals.

SeminarNeuroscience

Neural circuits that support robust and flexible navigation in dynamic naturalistic environments

Hannah Haberkern
HHMI Janelia Research Campus
Aug 15, 2021

Tracking heading within an environment is a fundamental requirement for flexible, goal-directed navigation. In insects, a head-direction representation that guides the animal’s movements is maintained in a conserved brain region called the central complex. Two-photon calcium imaging of genetically targeted neural populations in the central complex of tethered fruit flies behaving in virtual reality (VR) environments has shown that the head-direction representation is updated based on self-motion cues and external sensory information, such as visual features and wind direction. Thus far, the head direction representation has mainly been studied in VR settings that only give flies control of the angular rotation of simple sensory cues. How the fly’s head direction circuitry enables the animal to navigate in dynamic, immersive and naturalistic environments is largely unexplored. I have developed a novel setup that permits imaging in complex VR environments that also accommodate flies’ translational movements. I have previously demonstrated that flies perform visually-guided navigation in such an immersive VR setting, and also that they learn to associate aversive optogenetically-generated heat stimuli with specific visual landmarks. A stable head direction representation is likely necessary to support such behaviors, but the underlying neural mechanisms are unclear. Based on a connectomic analysis of the central complex, I identified likely circuit mechanisms for prioritizing and combining different sensory cues to generate a stable head direction representation in complex, multimodal environments. I am now testing these predictions using calcium imaging in genetically targeted cell types in flies performing 2D navigation in immersive VR.

SeminarNeuroscienceRecording

In-Love with Addiction Neuroscience

Yasmin Hurd
Icahn School of Medicine at Mount Sinai, USA
Jul 14, 2021

In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.

SeminarOpen SourceRecording

OpenFlexure

Joe Knapper
University of Bath
Jul 8, 2021

OpenFlexure is a 3D printed flexure translation stage, developed by a group at the Bath University. The stage is capable of sub-micron-scale motion, with very small drift over time. Which makes it quite good, among other things, for time-lapse protocols that need to be done over days/weeks time, and under space restricted areas, such as fume hoods.

SeminarNeuroscience

Developing a mouse incentive delay task

Miao Ge
Fudan University
Jun 22, 2021

Monetary incentive delay task (MID) is a well-validated human functional MRI task widely used in probing affective-motivational processes in psychiatric disorders. We are developing a mouse version of the MID task in order to facilitate translations of findings from the wealth of human imaging studies. This talk presents our task design and behavioural data from the ongoing work.

SeminarNeuroscience

Brain-body interactions in the metabolic/nutritional control of puberty: Neuropeptide pathways and central energy sensors

Manuel Tena-Sempere
IMIBIC Cordoba
May 30, 2021

Puberty is a brain-driven phenomenon, which is under the control of sophisticated regulatory networks that integrate a large number of endogenous and environmental signals, including metabolic and nutritional cues. Puberty onset is tightly bound to the state of body energy reserves, and deregulation of energy/metabolic homeostasis is often associated with alterations in the timing of puberty. However, despite recent progress in the field, our knowledge of the specific molecular mechanisms and pathways whereby our brain decode metabolic information to modulate puberty onset remains fragmentary and incomplete. Compelling evidence, gathered over the last fifteen years, supports an essential role of hypothalamic neurons producing kisspeptins, encoded by Kiss1, in the neuroendocrine control of puberty. Kiss1 neurons are major components of the hypothalamic GnRH pulse generator, whose full activation is mandatory pubertal onset. Kiss1 neurons seemingly participate in transmitting the regulatory actions of metabolic cues on pubertal maturation. However, the modulatory influence of metabolic signals (e.g., leptin) on Kiss1 neurons might be predominantly indirect and likely involves also the interaction with other transmitters and neuronal populations. In my presentation, I will review herein recent work of our group, using preclinical models, addressing the molecular mechanisms whereby Kiss1 neurons are modulated by metabolic signals, and thereby contribute to the nutritional control of puberty. In this context, the putative roles of the energy/metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1, in the metabolic control of Kiss1 neurons and puberty will be discussed. In addition, I will summarize recent findings from our team pointing out a role of central de novo ceramide signaling in mediating the impact of obesity of (earlier) puberty onset, via non-canonical, kisspeptin-related pathways. These findings are posed of translational interest, as perturbations of these molecular pathways could contribute to the alterations of pubertal timing linked to conditions of metabolic stress in humans, ranging from malnutrition to obesity, and might become druggable targets for better management of pubertal disorders.

SeminarNeuroscience

Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition

Clark Roberts
University of Cambridge, Department of Psychology
May 25, 2021

Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans – which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.

SeminarNeuroscience

Neural mechanisms of navigation behavior

Rachel Wilson
Joseph B. Martin Professor of Basic Research in the Field of Neurobiology, Harvard Medical School. Investigator, Howard Hughes Medical Institute.
May 25, 2021

The regions of the insect brain devoted to spatial navigation are beautifully orderly, with a remarkably precise pattern of synaptic connections. Thus, we can learn much about the neural mechanisms of spatial navigation by targeting identifiable neurons in these networks for in vivo patch clamp recording and calcium imaging. Our lab has recently discovered that the "compass system" in the Drosophila brain is anchored to not only visual landmarks, but also the prevailing wind direction. Moreover, we found that the compass system can re-learn the relationship between these external sensory cues and internal self-motion cues, via rapid associative synaptic plasticity. Postsynaptic to compass neurons, we found neurons that conjunctively encode heading direction and body-centric translational velocity. We then showed how this representation of travel velocity is transformed from body- to world-centric coordinates at the subsequent layer of the network, two synapses downstream from compass neurons. By integrating this world-centric vector-velocity representation over time, it should be possible for the brain to form a stored representation of the body's path through the environment.

SeminarNeuroscience

From 1D to 5D: Data-driven Discovery of Whole-brain Dynamic Connectivity in fMRI Data

Vince Calhoun
Founding Director, Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA
May 19, 2021

The analysis of functional magnetic resonance imaging (fMRI) data can greatly benefit from flexible analytic approaches. In particular, the advent of data-driven approaches to identify whole-brain time-varying connectivity and activity has revealed a number of interesting relevant variation in the data which, when ignored, can provide misleading information. In this lecture I will provide a comparative introduction of a range of data-driven approaches to estimating time-varying connectivity. I will also present detailed examples where studies of both brain health and disorder have been advanced by approaches designed to capture and estimate time-varying information in resting fMRI data. I will review several exemplar data sets analyzed in different ways to demonstrate the complementarity as well as trade-offs of various modeling approaches to answer questions about brain function. Finally, I will review and provide examples of strategies for validating time-varying connectivity including simulations, multimodal imaging, and comparative prediction within clinical populations, among others. As part of the interactive aspect I will provide a hands-on guide to the dynamic functional network connectivity toolbox within the GIFT software, including an online didactic analytic decision tree to introduce the various concepts and decisions that need to be made when using such tools

SeminarNeuroscience

Towards targeted therapies for the treatment of Dravet Syndrome

Gaia Colasante
Ospedale San Raffaele
May 18, 2021

Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.

ePoster

Axonal transport: A new role for local translation?

Fang Shin Nian, Silvia Turchetto, Nguyen Laurent

FENS Forum 2024

ePoster

Butyrylcholinesterase as a potential biomarker for depression: Insights from a translational study

Berkan Bozkurt, İzel Cemre Aksahin, Toghrul Almammadov, Deniz Ceylan, Safacan Kolemen, Hale Yapici Eser

FENS Forum 2024

ePoster

Effects of alprazolam on anxiety-related behavior in an invertebrate model: Advancing translational neuroscience

Veronica Rivi, Johanna Maria Catharina Blom, Luca Pani, Giulia Puja, Fabio Tascedda, Cristina Benatti

FENS Forum 2024

ePoster

Exploring altered translation in autism spectrum disorder

Jose Ignacio Astorga, Marija Mihailovic, Matthias Selbach

FENS Forum 2024

ePoster

Individual behavioral profiling as a translational approach for assessing treatment responsiveness in an animal model of PTSD

Maja Snippe Strauss, Ishita Sarkar, Amir Benhos, Adi Tenenhaus Zamir, Gal Richter-Levin

FENS Forum 2024

ePoster

A massively parallel reporter assay for translational control maps the regulatory landscape of neuronal 3’UTRs

Orit David, Kim Beirak, Malak Nijim, Yahia Mattar, Anton Schwartz, Martin Mikl

FENS Forum 2024

ePoster

Can a mirror reflect psychosis? A reverse translational approach to quantify anomalous subjective experience

Daria Chestnykh, Stephan von Hörsten, Johannes Kornhuber, Christian P. Müller

FENS Forum 2024

ePoster

The neuropathologic basis for translational biomarker development in the macaque model of late-onset Alzheimer’s disease

Caroline Zeiss, Anita Huttner, Alvaro Duque

FENS Forum 2024

ePoster

Palmitic acid induces posttranslational modifications of tau protein in Alzheimer’s disease-related epitopes and increases intraneuronal tau levels

Valeria Melissa García Cruz, Clorinda Arias

FENS Forum 2024

ePoster

Protein levels and post-translational modifications of inhibitory synapse proteins in the mammalian brain are regulated by the plant-derived artemisinins

Eva Kiss, Stefan Kins, Gabriela Patrichi, Kinga Hajnal Venczel Szakács, Karin Gorgas, Joachim Kirsch, Jochen Kuhse

FENS Forum 2024

ePoster

Reelin modulates acetylcholine-induced calcium signals and posttranslational protein modifications

Marie-Luise Kümmel, Eckart Förster

FENS Forum 2024

ePoster

A Ribo-tag based screen identifies novel translational regulation-dependent mechanisms involved in axon guidance

Veronica Murcia-Belmonte, M Teresa Lopez-Cascales, Angel Barco, Eloisa Herrera

FENS Forum 2024

ePoster

Role of PRDM2 through the prefrontal projection in stress-induced reinstatement of alcohol seeking: An epigenetic mechanism with translational potential

Kanat Chanthongdee, Tetiana Kardesh, Li Xu, Michele Petrella, Leon Höglund, Andrea Coppola, Estelle Barbier, Markus Heilig

FENS Forum 2024

ePoster

Translational regulation of oxytocin receptor expression in the context of social behavior

Julia Odermatt, Dietmar Schreiner, Raul Ortiz, Peter Scheiffele

FENS Forum 2024