Translational
translational neuroscience
Gilles Vanwalleghem
1-2 new group leaders in the field of translational neuroscience. The start-up package of 1.6 millions euro for 5 years, with potential 4 years extension.
Dr. Joseph M Barnby
The post holder will be a member of the SoCCR Lab with responsibility for the provision of computational support for a Wellcome Trust-funded project, “Hypatia: Health Modelling Made Simple”. The role involves software engineering/programming the Hypatia site, retaining a core knowledge of computational modelling as it relates to health care, neuroscience, and psychology, and liaising with project consultants to develop the UX/UI, backend support, and aesthetics of the platform. The position offers an opportunity to develop and use state-of-the-art methods to build a free browser-based solution to allow simulation and fitting of common computational models, with the final milestone of 12 months to have a working beta version. There is significant opportunity for skill development, including gaining experience of industry liaison, translational neuroscience, and computational modelling expertise.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
From bench to clinic – Translating fundamental neuroscience into real-life healthcare practices, and developing nationally recognised life science companies
Dr. Ryan C.N. D’Arcy is a Canadian neuroscientist, researcher, innovator and entrepreneur. Dr. D'Arcy co-founded HealthTech Connex Inc. and serves as President and Chief Scientific Officer. HealthTech Connex translates neuroscience advances into health technology breakthroughs. D'Arcy is most known for coining the term "brain vital signs" and for leading the research and development of the brain vital signs framework. Dr. D’Arcy also holds a BC Leadership Chair in Medical Technology, is a full Professor at Simon Fraser University, and a member of the DM Centre for Brain Health at the University of British Columbia. He has published more than 260 academic works, attracted more than $85 Million CAD in competitive research and innovation funding, and been recognized through numerous awards and distinctions. Please join us for an exciting virtual talk with Dr. D'Arcy who will speak on some of the current research he is involved in, how he is translating this research into real-life applications, and the development of HealthTech Connects Inc.
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
Towards a Translational Neuroscience of Consciousness
The cognitive neuroscience of conscious perception has seen considerable growth over the past few decades. Confirming an influential hypothesis driven by earlier studies of neuropsychological patients, we have found that the lateral and polar prefrontal cortices play important causal roles in the generation of subjective experiences. However, this basic empirical finding has been hotly contested by researchers with different theoretical commitments, and the differences are at times difficult to resolve. To address the controversies, I suggest one alternative venue may be to look for clinical applications derived from current theories. I outline an example in which we used closed-loop fMRI combined with machine learning to nonconsciously manipulate the physiological responses to threatening stimuli, such as spiders or snakes. A clinical trial involving patients with phobia is currently taking place. I also outline how this theoretical framework may be extended to other diseases. Ultimately, a truly meaningful understanding of the fundamental nature of our mental existence should lead to useful insights for our colleagues on the clinical frontlines. If we use this as a yardstick, whoever loses the esoteric theoretical debates, both science and the patients will always win.
Effects of alprazolam on anxiety-related behavior in an invertebrate model: Advancing translational neuroscience
FENS Forum 2024