← Back

Ventromedial Prefrontal Cortex

Topic spotlight
TopicWorld Wide

ventromedial prefrontal cortex

Discover seminars, jobs, and research tagged with ventromedial prefrontal cortex across World Wide.
7 curated items4 Seminars3 ePosters
Updated about 1 year ago
7 items · ventromedial prefrontal cortex
7 results
SeminarNeuroscience

Decomposing motivation into value and salience

Philippe Tobler
University of Zurich
Oct 31, 2024

Humans and other animals approach reward and avoid punishment and pay attention to cues predicting these events. Such motivated behavior thus appears to be guided by value, which directs behavior towards or away from positively or negatively valenced outcomes. Moreover, it is facilitated by (top-down) salience, which enhances attention to behaviorally relevant learned cues predicting the occurrence of valenced outcomes. Using human neuroimaging, we recently separated value (ventral striatum, posterior ventromedial prefrontal cortex) from salience (anterior ventromedial cortex, occipital cortex) in the domain of liquid reward and punishment. Moreover, we investigated potential drivers of learned salience: the probability and uncertainty with which valenced and non-valenced outcomes occur. We find that the brain dissociates valenced from non-valenced probability and uncertainty, which indicates that reinforcement matters for the brain, in addition to information provided by probability and uncertainty alone, regardless of valence. Finally, we assessed learning signals (unsigned prediction errors) that may underpin the acquisition of salience. Particularly the insula appears to be central for this function, encoding a subjective salience prediction error, similarly at the time of positively and negatively valenced outcomes. However, it appears to employ domain-specific time constants, leading to stronger salience signals in the aversive than the appetitive domain at the time of cues. These findings explain why previous research associated the insula with both valence-independent salience processing and with preferential encoding of the aversive domain. More generally, the distinction of value and salience appears to provide a useful framework for capturing the neural basis of motivated behavior.

SeminarNeuroscience

From oscillations to laminar responses - characterising the neural circuitry of autobiographical memories

Eleanor Maguire
Wellcome Centre for Human Neuroimaging at UCL
Nov 30, 2020

Autobiographical memories are the ghosts of our past. Through them we visit places long departed, see faces once familiar, and hear voices now silent. These, often decades-old, personal experiences can be recalled on a whim or come unbidden into our everyday consciousness. Autobiographical memories are crucial to cognition because they facilitate almost everything we do, endow us with a sense of self and underwrite our capacity for autonomy. They are often compromised by common neurological and psychiatric pathologies with devastating effects. Despite autobiographical memories being central to everyday mental life, there is no agreed model of autobiographical memory retrieval, and we lack an understanding of the neural mechanisms involved. This precludes principled interventions to manage or alleviate memory deficits, and to test the efficacy of treatment regimens. This knowledge gap exists because autobiographical memories are challenging to study – they are immersive, multi-faceted, multi-modal, can stretch over long timescales and are grounded in the real world. One missing piece of the puzzle concerns the millisecond neural dynamics of autobiographical memory retrieval. Surprisingly, there are very few magnetoencephalography (MEG) studies examining such recall, despite the important insights this could offer into the activity and interactions of key brain regions such as the hippocampus and ventromedial prefrontal cortex. In this talk I will describe a series of MEG studies aimed at uncovering the neural circuitry underpinning the recollection of autobiographical memories, and how this changes as memories age. I will end by describing our progress on leveraging an exciting new technology – optically pumped MEG (OP-MEG) which, when combined with virtual reality, offers the opportunity to examine millisecond neural responses from the whole brain, including deep structures, while participants move within a virtual environment, with the attendant head motion and vestibular inputs.

ePoster

Irrational choice via curvilinear value geometry in ventromedial prefrontal cortex

COSYNE 2022

ePoster

Irrational choice via curvilinear value geometry in ventromedial prefrontal cortex

COSYNE 2022

ePoster

Depressive and anxious phenotype correlates with functional changes in the ventromedial prefrontal cortex - dorsal raphe nucleus circuit in female mice with alpha-synucleinopathy

María Sancho Alonso, Manuel Esteban Vila-Martín, Claudia Yanes Castillo, Verónica Paz, Vicent Teruel Martí, Analia Bortolozzi

FENS Forum 2024