← Back

Coding

Topic spotlight
TopicNeuro

coding

Discover seminars, jobs, and research tagged with coding across Neuro.
50 curated items50 Seminars
Updated in about 2 months
50 items · coding

Latest

50 results
SeminarNeuroscience

Decoding stress vulnerability

Stamatina Tzanoulinou
University of Lausanne, Faculty of Biology and Medicine, Department of Biomedical Sciences
Feb 20, 2026

Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.

SeminarNeuroscience

Computational Mechanisms of Predictive Processing in Brains and Machines

Dr. Antonino Greco
Hertie Institute for Clinical Brain Research, Germany
Dec 10, 2025

Predictive processing offers a unifying view of neural computation, proposing that brains continuously anticipate sensory input and update internal models based on prediction errors. In this talk, I will present converging evidence for the computational mechanisms underlying this framework across human neuroscience and deep neural networks. I will begin with recent work showing that large-scale distributed prediction-error encoding in the human brain directly predicts how sensory representations reorganize through predictive learning. I will then turn to PredNet, a popular predictive coding inspired deep network that has been widely used to model real-world biological vision systems. Using dynamic stimuli generated with our Spatiotemporal Style Transfer algorithm, we demonstrate that PredNet relies primarily on low-level spatiotemporal structure and remains insensitive to high-level content, revealing limits in its generalization capacity. Finally, I will discuss new recurrent vision models that integrate top-down feedback connections with intrinsic neural variability, uncovering a dual mechanism for robust sensory coding in which neural variability decorrelates unit responses, while top-down feedback stabilizes network dynamics. Together, these results outline how prediction error signaling and top-down feedback pathways shape adaptive sensory processing in biological and artificial systems.

SeminarNeuroscience

Prefrontal-thalamic goal-state coding segregates navigation episodes into spatially consistent parallel hippocampal maps

Hiroshi Ito
University of Lausanne
Dec 1, 2025
SeminarNeuroscience

Top-down control of neocortical threat memory

Prof. Dr. Johannes Letzkus
Universität Freiburg, Germany
Nov 12, 2025

Accurate perception of the environment is a constructive process that requires integration of external bottom-up sensory signals with internally-generated top-down information reflecting past experiences and current aims. Decades of work have elucidated how sensory neocortex processes physical stimulus features. In contrast, examining how memory-related-top-down information is encoded and integrated with bottom-up signals has long been challenging. Here, I will discuss our recent work pinpointing the outermost layer 1 of neocortex as a central hotspot for processing of experience-dependent top-down information threat during perception, one of the most fundamentally important forms of sensation.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Functional connectomics reveals general wiring rule in mouse visual cortex

Ariel Zeleznikow-Johnston
Monash University
Oct 21, 2025

Functional connectomics reveals general wiring rule in mouse visual cortex

SeminarNeuroscienceRecording

Memory Decoding Journal Club: "Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Oct 7, 2025

Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning

Ken Hayworth
Co-Founder and Chief Science Officer, Carboncopies
Sep 23, 2025

Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning

SeminarNeuroscience

Unpacking the role of the medial septum in spatial coding in the medial entorhinal cortex

Jennifer Robinson
McGill University
Sep 11, 2025
SeminarNeuroscienceRecording

Memory Decoding Journal Club: A combinatorial neural code for long-term motor memory

Ariel Zeleznikow-Johnston
Monash University
Sep 9, 2025

A combinatorial neural code for long-term motor memory

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Behavioral time scale synaptic plasticity underlies CA1 place fields

Kenneth Hayworth
Co-Founder and Chief Science Officer, Carboncopies
Aug 26, 2025

Behavioral time scale synaptic plasticity underlies CA1 place fields

SeminarNeuroscienceRecording

Memory Decoding Journal Club: "Connectomic reconstruction of a cortical column" cortical column

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Aug 12, 2025

Connectomic reconstruction of a cortical column

SeminarNeuroscienceRecording

Memory Decoding Journal Club: "Binary and analog variation of synapses between cortical pyramidal neurons

Kenneth Hayworth
Co-Founder and Chief Science Officer, Carboncopies
Jul 15, 2025

Binary and analog variation of synapses between cortical pyramidal neurons

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 9, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Systems consolidation reorganizes hippocampal engram circuitry

Ariel Zeleznikow-Johnston
Monash University
Jul 1, 2025

Systems consolidation reorganizes hippocampal engram circuitry

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Neocortical synaptic engrams for remote contextual memories

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Jun 17, 2025

Neocortical synaptic engrams for remote contextual memories

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 13, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

From Spiking Predictive Coding to Learning Abstract Object Representation

Prof. Jochen Triesch
Frankfurt Institute for Advanced Studies
Jun 12, 2025

In a first part of the talk, I will present Predictive Coding Light (PCL), a novel unsupervised learning architecture for spiking neural networks. In contrast to conventional predictive coding approaches, which only transmit prediction errors to higher processing stages, PCL learns inhibitory lateral and top-down connectivity to suppress the most predictable spikes and passes a compressed representation of the input to higher processing stages. We show that PCL reproduces a range of biological findings and exhibits a favorable tradeoff between energy consumption and downstream classification performance on challenging benchmarks. A second part of the talk will feature our lab’s efforts to explain how infants and toddlers might learn abstract object representations without supervision. I will present deep learning models that exploit the temporal and multimodal structure of their sensory inputs to learn representations of individual objects, object categories, or abstract super-categories such as „kitchen object“ in a fully unsupervised fashion. These models offer a parsimonious account of how abstract semantic knowledge may be rooted in children's embodied first-person experiences.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: "Structure and function of the hippocampal CA3 module

Kenneth Hayworth
Co-Founder and Chief Science Officer, Carboncopies
Jun 3, 2025

Structure and function of the hippocampal CA3 module

SeminarNeuroscience

Neural mechanisms of optimal performance

Luca Mazzucato
University of Oregon
May 23, 2025

When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: "Synaptic architecture of a memory engram in the mouse hippocampus

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
May 20, 2025

Synaptic architecture of a memory engram in the mouse hippocampus

SeminarNeuroscience

Single-neuron correlates of perception and memory in the human medial temporal lobe

Prof. Dr. Dr. Florian Mormann
University of Bonn, Germany
May 14, 2025

The human medial temporal lobe contains neurons that respond selectively to the semantic contents of a presented stimulus. These "concept cells" may respond to very different pictures of a given person and even to their written or spoken name. Their response latency is far longer than necessary for object recognition, they follow subjective, conscious perception, and they are found in brain regions that are crucial for declarative memory formation. It has thus been hypothesized that they may represent the semantic "building blocks" of episodic memories. In this talk I will present data from single unit recordings in the hippocampus, entorhinal cortex, parahippocampal cortex, and amygdala during paradigms involving object recognition and conscious perception as well as encoding of episodic memories in order to characterize the role of concept cells in these cognitive functions.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 14, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscienceRecording

Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons

Ariel Zeleznikow-Johnston
Monash University
May 6, 2025

Join Us for the Memory Decoding Journal Club! A collaboration of the Carboncopies Foundation and BPF Aspirational Neuroscience. This time, we’re diving into a groundbreaking paper: "Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons

SeminarNeuroscienceRecording

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala

Kenneth Hayworth
Carboncopies Foundation & BPF Aspirational Neuroscience
Apr 22, 2025

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Apr 8, 2025

Join us for the Memory Decoding Journal Club, a collaboration between the Carboncopies Foundation and BPF Aspirational Neuroscience. This month, we're diving into a groundbreaking paper: 'Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating' by Bo Lei, Bilin Kang, Yuejun Hao, Haoyu Yang, Zihan Zhong, Zihan Zhai, and Yi Zhong from Tsinghua University, Beijing Academy of Artificial Intelligence, IDG/McGovern Institute of Brain Research, and Peking Union Medical College. Dr. Randal Koene will guide us through an engaging discussion on these exciting findings and their implications for neuroscience and memory research.

SeminarNeuroscience

Active Predictive Coding and the Primacy of Actions in Natural and Artificial Intelligence

Rajesh Rao
University of Washington
Apr 7, 2025
SeminarNeuroscience

Decoding ketamine: Neurobiological mechanisms underlying its rapid antidepressant efficacy

Zanos Panos
Translational Neuropharmacology Lab, University of Cyprus, Center for Applied Neurosience & Department of Psychology, Nicosia, Cyprus
Apr 4, 2025

Unlike traditional monoamine-based antidepressants that require weeks to exert effects, ketamine alleviates depression within hours, though its clinical use is limited by side effects. While ketamine was initially thought to work primarily through NMDA receptor (NMDAR) inhibition, our research reveals a more complex mechanism. We demonstrate that NMDAR inhibition alone cannot explain ketamine's sustained antidepressant effects, as other NMDAR antagonists like MK-801 lack similar efficacy. Instead, the (2R,6R)-hydroxynorketamine (HNK) metabolite appears critical, exhibiting antidepressant effects without ketamine's side effects. Paradoxically, our findings suggest an inverted U-shaped dose-response relationship where excessive NMDAR inhibition may actually impede antidepressant efficacy, while some level of NMDAR activation is necessary. The antidepressant actions of ketamine and (2R,6R)-HNK require AMPA receptor activation, leading to synaptic potentiation and upregulation of AMPA receptor subunits GluA1 and GluA2. Furthermore, NMDAR subunit GluN2A appears necessary and possibly sufficient for these effects. This research establishes NMDAR-GluN2A activation as a common downstream effector for rapid-acting antidepressants, regardless of their initial targets, offering promising directions for developing next-generation antidepressants with improved efficacy and reduced side effects.

SeminarNeuroscienceRecording

Altered grid-like coding in early blind people and the role of vision in conceptual navigation

Roberto Bottini
CIMeC, University of Trento
Mar 6, 2025
SeminarNeuroscience

Circuit Mechanisms of Remote Memory

Lauren DeNardo, PhD
Department of Physiology, David Geffen School of Medicine, UCLA
Feb 11, 2025

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

SeminarNeuroscience

Visual objects refine the encoding of head direction

Emilie Macé
University Medical Center Göttingen
Jan 23, 2025
SeminarNeuroscience

Decomposing motivation into value and salience

Philippe Tobler
University of Zurich
Nov 1, 2024

Humans and other animals approach reward and avoid punishment and pay attention to cues predicting these events. Such motivated behavior thus appears to be guided by value, which directs behavior towards or away from positively or negatively valenced outcomes. Moreover, it is facilitated by (top-down) salience, which enhances attention to behaviorally relevant learned cues predicting the occurrence of valenced outcomes. Using human neuroimaging, we recently separated value (ventral striatum, posterior ventromedial prefrontal cortex) from salience (anterior ventromedial cortex, occipital cortex) in the domain of liquid reward and punishment. Moreover, we investigated potential drivers of learned salience: the probability and uncertainty with which valenced and non-valenced outcomes occur. We find that the brain dissociates valenced from non-valenced probability and uncertainty, which indicates that reinforcement matters for the brain, in addition to information provided by probability and uncertainty alone, regardless of valence. Finally, we assessed learning signals (unsigned prediction errors) that may underpin the acquisition of salience. Particularly the insula appears to be central for this function, encoding a subjective salience prediction error, similarly at the time of positively and negatively valenced outcomes. However, it appears to employ domain-specific time constants, leading to stronger salience signals in the aversive than the appetitive domain at the time of cues. These findings explain why previous research associated the insula with both valence-independent salience processing and with preferential encoding of the aversive domain. More generally, the distinction of value and salience appears to provide a useful framework for capturing the neural basis of motivated behavior.

SeminarNeuroscience

Probing neural population dynamics with recurrent neural networks

Chethan Pandarinath
Emory University and Georgia Tech
Jun 12, 2024

Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present latent factor analysis via dynamical systems, a sequential autoencoding approach that enables inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales. I will also discuss recent adaptations of the method to uncover dynamics from neural activity recorded via 2P Calcium imaging. Finally, time permitting, I will mention recent efforts to improve the interpretability of deep-learning based dynamical systems models.

SeminarNeuroscience

Trends in NeuroAI - Brain-like topography in transformers (Topoformer)

Nicholas Blauch
Jun 7, 2024

Dr. Nicholas Blauch will present on his work "Topoformer: Brain-like topographic organization in transformer language models through spatial querying and reweighting". Dr. Blauch is a postdoctoral fellow in the Harvard Vision Lab advised by Talia Konkle and George Alvarez. Paper link: https://openreview.net/pdf?id=3pLMzgoZSA Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).

SeminarNeuroscienceRecording

This decision matters: Sorting out the variables that lead to a single choice

Mathew Diamond
International School for Advanced Studies (SISSA)
Apr 18, 2024
SeminarNeuroscience

Learning representations of specifics and generalities over time

Anna Schapiro
University of Pennsylvania
Apr 12, 2024

There is a fundamental tension between storing discrete traces of individual experiences, which allows recall of particular moments in our past without interference, and extracting regularities across these experiences, which supports generalization and prediction in similar situations in the future. One influential proposal for how the brain resolves this tension is that it separates the processes anatomically into Complementary Learning Systems, with the hippocampus rapidly encoding individual episodes and the neocortex slowly extracting regularities over days, months, and years. But this does not explain our ability to learn and generalize from new regularities in our environment quickly, often within minutes. We have put forward a neural network model of the hippocampus that suggests that the hippocampus itself may contain complementary learning systems, with one pathway specializing in the rapid learning of regularities and a separate pathway handling the region’s classic episodic memory functions. This proposal has broad implications for how we learn and represent novel information of specific and generalized types, which we test across statistical learning, inference, and category learning paradigms. We also explore how this system interacts with slower-learning neocortical memory systems, with empirical and modeling investigations into how the hippocampus shapes neocortical representations during sleep. Together, the work helps us understand how structured information in our environment is initially encoded and how it then transforms over time.

SeminarNeuroscience

How are the epileptogenesis clocks ticking?

Cristina Reschke
RCSI
Apr 10, 2024

The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.

SeminarNeuroscience

Stress changes risk-taking by altering Bayesian magnitude coding in parietal cortex

Christian Ruff
University of Zurich, Switzerland
Feb 28, 2024
SeminarNeuroscience

Dyslexia, Rhythm, Language and the Developing Brain

Usha Goswami CBE
University of Cambridge
Feb 22, 2024

Recent insights from auditory neuroscience provide a new perspective on how the brain encodes speech. Using these recent insights, I will provide an overview of key factors underpinning individual differences in children’s development of language and phonology, providing a context for exploring atypical reading development (dyslexia). Children with dyslexia are relatively insensitive to acoustic cues related to speech rhythm patterns. This lack of rhythmic sensitivity is related to the atypical neural encoding of rhythm patterns in speech by the brain. I will describe our recent data from infants as well as children, demonstrating developmental continuity in the key neural variables.

SeminarNeuroscience

Trends in NeuroAI - Unified Scalable Neural Decoding (POYO)

Mehdi Azabou
Feb 22, 2024

Lead author Mehdi Azabou will present on his work "POYO-1: A Unified, Scalable Framework for Neural Population Decoding" (https://poyo-brain.github.io/). Mehdi is an ML PhD student at Georgia Tech advised by Dr. Eva Dyer. Paper link: https://arxiv.org/abs/2310.16046 Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).

SeminarNeuroscienceRecording

Reimagining the neuron as a controller: A novel model for Neuroscience and AI

Dmitri 'Mitya' Chklovskii
Flatiron Institute, Center for Computational Neuroscience
Feb 5, 2024

We build upon and expand the efficient coding and predictive information models of neurons, presenting a novel perspective that neurons not only predict but also actively influence their future inputs through their outputs. We introduce the concept of neurons as feedback controllers of their environments, a role traditionally considered computationally demanding, particularly when the dynamical system characterizing the environment is unknown. By harnessing a novel data-driven control framework, we illustrate the feasibility of biological neurons functioning as effective feedback controllers. This innovative approach enables us to coherently explain various experimental findings that previously seemed unrelated. Our research has profound implications, potentially revolutionizing the modeling of neuronal circuits and paving the way for the creation of alternative, biologically inspired artificial neural networks.

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Reese Kneeland
Jan 5, 2024

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 7, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 29, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 21, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscience

BrainLM Journal Club

Connor Lane
Sep 29, 2023

Connor Lane will lead a journal club on the recent BrainLM preprint, a foundation model for fMRI trained using self-supervised masked autoencoder training. Preprint: https://www.biorxiv.org/content/10.1101/2023.09.12.557460v1 Tweeprint: https://twitter.com/david_van_dijk/status/1702336882301112631?t=Q2-U92-BpJUBh9C35iUbUA&s=19

SeminarNeuroscience

Algonauts 2023 winning paper journal club (fMRI encoding models)

Huzheng Yang, Paul Scotti
Aug 18, 2023

Algonauts 2023 was a challenge to create the best model that predicts fMRI brain activity given a seen image. Huze team dominated the competition and released a preprint detailing their process. This journal club meeting will involve open discussion of the paper with Q/A with Huze. Paper: https://arxiv.org/pdf/2308.01175.pdf Related paper also from Huze that we can discuss: https://arxiv.org/pdf/2307.14021.pdf

SeminarNeuroscience

1.8 billion regressions to predict fMRI (journal club)

Mihir Tripathy
Jul 28, 2023

Public journal club where this week Mihir will present on the 1.8 billion regressions paper (https://www.biorxiv.org/content/10.1101/2022.03.28.485868v2), where the authors use hundreds of pretrained model embeddings to best predict fMRI activity.

SeminarNeuroscience

Decoding mental conflict between reward and curiosity in decision-making

Naoki Honda
Hiroshima University
Jul 11, 2023

Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.

SeminarNeuroscience

Quantifying perturbed SynGAP1 function caused by coding mutations

Michael Courtney, PhD
Turku Bioscience
Jun 15, 2023

coding coverage

50 items

Seminar50
Domain spotlight

Explore how coding research is advancing inside Neuro.

Visit domain