science
Latest
Decoding stress vulnerability
Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.
sensorimotor control, mouvement, touch, EEG
Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.
Computational Mechanisms of Predictive Processing in Brains and Machines
Predictive processing offers a unifying view of neural computation, proposing that brains continuously anticipate sensory input and update internal models based on prediction errors. In this talk, I will present converging evidence for the computational mechanisms underlying this framework across human neuroscience and deep neural networks. I will begin with recent work showing that large-scale distributed prediction-error encoding in the human brain directly predicts how sensory representations reorganize through predictive learning. I will then turn to PredNet, a popular predictive coding inspired deep network that has been widely used to model real-world biological vision systems. Using dynamic stimuli generated with our Spatiotemporal Style Transfer algorithm, we demonstrate that PredNet relies primarily on low-level spatiotemporal structure and remains insensitive to high-level content, revealing limits in its generalization capacity. Finally, I will discuss new recurrent vision models that integrate top-down feedback connections with intrinsic neural variability, uncovering a dual mechanism for robust sensory coding in which neural variability decorrelates unit responses, while top-down feedback stabilizes network dynamics. Together, these results outline how prediction error signaling and top-down feedback pathways shape adaptive sensory processing in biological and artificial systems.
High Stakes in the Adolescent Brain: Glia Ignite Under THC’s Influence
Convergent large-scale network and local vulnerabilities underlie brain atrophy across Parkinson’s disease stages
The tubulin code in neuron health and disease : focus on detyrosination
Memory Decoding Journal Club: "Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system
Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system
AutoMIND: Deep inverse models for revealing neural circuit invariances
Endocannabinoid System Dysregulations in Binge Eating Disorder and Obesity
Memory Decoding Journal Club: Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning
Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning
Go with the visual flow: circuit mechanisms for gaze control during locomotion
Memory Decoding Journal Club: Behavioral time scale synaptic plasticity underlies CA1 place fields
Behavioral time scale synaptic plasticity underlies CA1 place fields
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
Memory Decoding Journal Club: "Connectomic reconstruction of a cortical column" cortical column
Connectomic reconstruction of a cortical column
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
Memory Decoding Journal Club: "Binary and analog variation of synapses between cortical pyramidal neurons
Binary and analog variation of synapses between cortical pyramidal neurons
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
“Brain theory, what is it or what should it be?”
n the neurosciences the need for some 'overarching' theory is sometimes expressed, but it is not always obvious what is meant by this. One can perhaps agree that in modern science observation and experimentation is normally complemented by 'theory', i.e. the development of theoretical concepts that help guiding and evaluating experiments and measurements. A deeper discussion of 'brain theory' will require the clarification of some further distictions, in particular: theory vs. model and brain research (and its theory) vs. neuroscience. Other questions are: Does a theory require mathematics? Or even differential equations? Today it is often taken for granted that the whole universe including everything in it, for example humans, animals, and plants, can be adequately treated by physics and therefore theoretical physics is the overarching theory. Even if this is the case, it has turned out that in some particular parts of physics (the historical example is thermodynamics) it may be useful to simplify the theory by introducing additional theoretical concepts that can in principle be 'reduced' to more complex descriptions on the 'microscopic' level of basic physical particals and forces. In this sense, brain theory may be regarded as part of theoretical neuroscience, which is inside biophysics and therefore inside physics, or theoretical physics. Still, in neuroscience and brain research, additional concepts are typically used to describe results and help guiding experimentation that are 'outside' physics, beginning with neurons and synapses, names of brain parts and areas, up to concepts like 'learning', 'motivation', 'attention'. Certainly, we do not yet have one theory that includes all these concepts. So 'brain theory' is still in a 'pre-newtonian' state. However, it may still be useful to understand in general the relations between a larger theory and its 'parts', or between microscopic and macroscopic theories, or between theories at different 'levels' of description. This is what I plan to do.
Seeing a changing world through the eyes of coral fishes
Neural control of internal affective states”
Memory Decoding Journal Club: Neocortical synaptic engrams for remote contextual memories
Neocortical synaptic engrams for remote contextual memories
“Development and application of gaze control models for active perception”
Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Immune and metabolic regulation of sensorimotor physiology and repair
Memory Decoding Journal Club: "Structure and function of the hippocampal CA3 module
Structure and function of the hippocampal CA3 module
Memory Decoding Journal Club: "Synaptic architecture of a memory engram in the mouse hippocampus
Synaptic architecture of a memory engram in the mouse hippocampus
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury
Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..
Rejuvenating the Alzheimer’s brain: Challenges & Opportunities
Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons
Join Us for the Memory Decoding Journal Club! A collaboration of the Carboncopies Foundation and BPF Aspirational Neuroscience. This time, we’re diving into a groundbreaking paper: "Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons
Recent views on pre-registration
A discussion on some recent perspectives on pre-registration, which has become a growing trend in the past few years. This is not just limited to neuroimaging, and it applies to most scientific fields. We will start with this overview editorial by Simmons et al. (2021): https://faculty.wharton.upenn.edu/wp-content/uploads/2016/11/34-Simmons-Nelson-Simonsohn-2021a.pdf, and also talk about a more critical perspective by Pham & Oh (2021): https://www.researchgate.net/profile/Michel-Pham/publication/349545600_Preregistration_Is_Neither_Sufficient_nor_Necessary_for_Good_Science/links/60fb311e2bf3553b29096aa7/Preregistration-Is-Neither-Sufficient-nor-Necessary-for-Good-Science.pdf. I would like us to discuss the pros and cons of pre-registration, and if we have time, I may do a demonstration of how to perform a pre-registration through the Open Science Framework.
Simulating Thought Disorder: Fine-Tuning Llama-2 for Synthetic Speech in Schizophrenia
Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics
Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.
Neurosurgery & Consciousness: Bridging Science and Philosophy in the Age of AI
Overview of neurosurgery specialty interplay between neurology, psychiatry and neurosurgery. Discussion on benefits and disadvantages of classifications. Presentation of sub-specialties: trauma, oncology, functional, pediatric, vascular and spine. How does an ordinary day of a neurosurgeon look like; outpatient clinic, emergencies, pre/intra/post operative patient care. An ordinary operation. Myth-busting and practical insights of every day practice. An ordinary operation. Hint for research on clinical problems to be solved. The coming ethical frontiers of neuroprosthetics. In part two we will explore the explanatory gap and its significance. We will review the more than 200 theories of the hard problem of consciousness, from the prevailing to the unconventional. Finally, we are going to reflect on the AI advancements and the claims of LLMs becoming conscious
Memory Decoding Journal Club: Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating
Join us for the Memory Decoding Journal Club, a collaboration between the Carboncopies Foundation and BPF Aspirational Neuroscience. This month, we're diving into a groundbreaking paper: 'Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating' by Bo Lei, Bilin Kang, Yuejun Hao, Haoyu Yang, Zihan Zhong, Zihan Zhai, and Yi Zhong from Tsinghua University, Beijing Academy of Artificial Intelligence, IDG/McGovern Institute of Brain Research, and Peking Union Medical College. Dr. Randal Koene will guide us through an engaging discussion on these exciting findings and their implications for neuroscience and memory research.
COSYNE 2025
The COSYNE 2025 conference was held in Montreal with post-conference workshops in Mont-Tremblant, continuing to provide a premier forum for computational and systems neuroscience. Attendees exchanged cutting-edge research in a single-track main meeting and in-depth specialized workshops, reflecting Cosyne’s mission to understand how neural systems function:contentReference[oaicite:6]{index=6}:contentReference[oaicite:7]{index=7}.
Pain in the Brain: A Drink a Day Could Bring More Than You Bargain
Cognitive maps as expectations learned across episodes – a model of the two dentate gyrus blades
How can the hippocampal system transition from episodic one-shot learning to a multi-shot learning regime and what is the utility of the resultant neural representations? This talk will explore the role of the dentate gyrus (DG) anatomy in this context. The canonical DG model suggests it performs pattern separation. More recent experimental results challenge this standard model, suggesting DG function is more complex and also supports the precise binding of objects and events to space and the integration of information across episodes. Very recent studies attribute pattern separation and pattern integration to anatomically distinct parts of the DG (the suprapyramidal blade vs the infrapyramidal blade). We propose a computational model that investigates this distinction. In the model the two processing streams (potentially localized in separate blades) contribute to the storage of distinct episodic memories, and the integration of information across episodes, respectively. The latter forms generalized expectations across episodes, eventually forming a cognitive map. We train the model with two data sets, MNIST and plausible entorhinal cortex inputs. The comparison between the two streams allows for the calculation of a prediction error, which can drive the storage of poorly predicted memories and the forgetting of well-predicted memories. We suggest that differential processing across the DG aids in the iterative construction of spatial cognitive maps to serve the generation of location-dependent expectations, while at the same time preserving episodic memory traces of idiosyncratic events.
What it’s like is all there is: The value of Consciousness
Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Bernstein Conference 2024
Each year the Bernstein Network invites the international computational neuroscience community to the annual Bernstein Conference for intensive scientific exchange:contentReference[oaicite:8]{index=8}. Bernstein Conference 2024, held in Frankfurt am Main, featured discussions, keynote lectures, and poster sessions, and has established itself as one of the most renowned conferences worldwide in this field:contentReference[oaicite:9]{index=9}:contentReference[oaicite:10]{index=10}.
FENS Forum 2024
Organised by FENS in partnership with the Austrian Neuroscience Association and the Hungarian Neuroscience Society, the FENS Forum 2024 will take place on 25–29 June 2024 in Vienna, Austria:contentReference[oaicite:0]{index=0}. The FENS Forum is Europe’s largest neuroscience congress, covering all areas of neuroscience from basic to translational research:contentReference[oaicite:1]{index=1}.
COSYNE 2023
The COSYNE 2023 conference provided an inclusive forum for exchanging experimental and theoretical approaches to problems in systems neuroscience, continuing the tradition of bringing together the computational neuroscience community:contentReference[oaicite:5]{index=5}. The main meeting was held in Montreal followed by post-conference workshops in Mont-Tremblant, fostering intensive discussions and collaboration.
Neuromatch 5
Neuromatch 5 (Neuromatch Conference 2022) was a fully virtual conference focused on computational neuroscience broadly construed, including machine learning work with explicit biological links:contentReference[oaicite:11]{index=11}. After four successful Neuromatch conferences, the fifth edition consolidated proven innovations from past events, featuring a series of talks hosted on Crowdcast and flash talk sessions (pre-recorded videos) with dedicated discussion times on Reddit:contentReference[oaicite:12]{index=12}.
COSYNE 2022
The annual Cosyne meeting provides an inclusive forum for the exchange of empirical and theoretical approaches to problems in systems neuroscience, in order to understand how neural systems function:contentReference[oaicite:2]{index=2}. The main meeting is single-track, with invited talks selected by the Executive Committee and additional talks and posters selected by the Program Committee based on submitted abstracts:contentReference[oaicite:3]{index=3}. The workshops feature in-depth discussion of current topics of interest in a small group setting:contentReference[oaicite:4]{index=4}.
Open-source solutions for research data management in neuroscience collaborations
Bernstein Conference 2024
Responses to inconsistent stimuli in pyramidal neurons: An open science dataset
COSYNE 2023
Second-order forward-mode optimization of RNNs for neuroscience
COSYNE 2025
Advanced metamodelling on the o2S2PARC computational neurosciences platform facilitates stimulation selectivity and power efficiency optimization and intelligent control
FENS Forum 2024
Beyond academic kindness: A multi-stakeholder approach to advance equity, diversity, and inclusion in neuroscience
FENS Forum 2024
Effects of alprazolam on anxiety-related behavior in an invertebrate model: Advancing translational neuroscience
FENS Forum 2024
Effects of an online intervention based on pain neuroscience education for pregnant women with lumbar pain on pain, disability, and kinesiophobia: A quasi-experimental pilot study
FENS Forum 2024
Effects of a prehabilitation programme based on pain neuroscience education in patients scheduled for lumbar radiculopathy surgery
FENS Forum 2024
Empowering collaborative neuroscience: Optimizing FAIR data sharing with a tailored open-source repository for CRC 1280 “Extinction Learning”
FENS Forum 2024
The importance of housing conditions in implementing the sex as a biological variable (SABV) policy in neuroscience rodent research
FENS Forum 2024
Integrating project management principles for efficient neuroscience research
FENS Forum 2024
"Neuroscience? Isn't that for clever people": Bringing neuroscience to new audiences through public outreach and education
FENS Forum 2024
Towards FAIR neuroscience: An efficient workflow for sharing and integrating data
FENS Forum 2024
Optimization techniques for machine learning based classification involving large-scale neuroscience datasets
Neuromatch 5
Where personality, memory, and decision-making meet: A cognitive-behavioral neuroscience study
FENS Forum 2024
Advancing neuroscience education without borders: make your training resources FAIR with INCF!
Neuromatch 5
Bottom-up approach to preprint peer-review: PCI Neuroscience
Neuromatch 5
Cleo: a simulation testbed for bridging model and experiment in mesoscale neuroscience
Neuromatch 5
Computational Neuroscience in the Arabic region
Neuromatch 5
Review of applications of graph theory and network neuroscience in the development of artificial neural networks
Neuromatch 5
science coverage
76 items