Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Glassy Phase Dynamically Balanced

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Glassy phase in dynamically balanced networks

Gianluigi Mongillo

CNRS

Schedule
Tuesday, February 16, 2021

Showing your local timezone

Schedule

Tuesday, February 16, 2021

11:00 AM America/New_York

Watch recording
Host: van Vreeswijk TNS

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

van Vreeswijk TNS

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

We study the dynamics of (inhibitory) balanced networks at varying (i) the level of symmetry in the synaptic connectivity; and (ii) the ariance of the synaptic efficacies (synaptic gain). We find three regimes of activity. For suitably low synaptic gain, regardless of the level of symmetry, there exists a unique stable fixed point. Using a cavity-like approach, we develop a quantitative theory that describes the statistics of the activity in this unique fixed point, and the conditions for its stability. Increasing the synaptic gain, the unique fixed point destabilizes, and the network exhibits chaotic activity for zero or negative levels of symmetry (i.e., random or antisymmetric). Instead, for positive levels of symmetry, there is multi-stability among a large number of marginally stable fixed points. In this regime, ergodicity is broken and the network exhibits non-exponential relaxational dynamics. We discuss the potential relevance of such a “glassy” phase to explain some features of cortical activity.

Topics

balanced networkbalanced networkscavitycavity approachchaoschaotic activitychaotic dynamicscortical activityergodicityfixed pointfixed pointsglassy phaseinhibitory synapsesnon-exponential dynamicssymmetry breakingsynaptic connectivitysynaptic gain

About the Speaker

Gianluigi Mongillo

CNRS

Contact & Resources

Personal Website

www.aging-vision-action.fr/people/gianluigi-mongillo/

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights