Emotion
emotion
Bianca Silva
The newly established Silva lab is seeking a Postdoctoral Fellow to study midline thalamic circuits in fear memory and fear extinction in the mouse. The Silva lab combines whole-brain functional tracing, chemogenetics, optogenetics and in vivo fiber photometry to investigate thalamic circuits involved in emotional regulation. We recently discovered that the nucleus reuniens of the thalamus mediates extinction of remote (older than 30 days) fear memories (Silva et al. Nat. Neurosci. 2021) and we are currently working to unravel its functional upstream and downstream partners. The successful candidate will design and implement experiments to elucidate and characterize the NRe-centered whole-brain circuit and identify its putative neurophysiological impairments in mouse models of PTSD. Experience with behavioral studies, stereotactic surgeries, programming, whole-brain microscopy or causal neuroscience is a plus, but is not required. The successful candidate should be highly motivated and have the ability to successfully lead a research project. The Silva lab is affiliated to the Institute of Neuroscience at the National Research Council of Italy and is located at the Neurocenter of the Humanitas Research Hospital in Rozzano, MI (https://www.humanitas-research.org/). Applicants should contact Bianca Silva (bianca.silva@in.cnr.it) with a current CV and a motivation letter. The position is full-time for 1 year, and renewable for other two. The position is immediately available and is funded by a 3-year grant by Cariplo Foundation. Within the first year, application to prestigious international postdoctoral fellowships (EMBO, Marie Curie, HFSP) is highly encouraged. Selected candidates will be directly contacted for interviews. After interview two reference letters will be requested.
Elisa Raffaella Ferre
The School of Psychological Science, Birkbeck University of London is seeking 2 open-ended Lecturers (tenure track Assistant Professors) with a focus on computational modelling and psychological processes such as Cognitive Science or Computational Cognitive Neuroscience. The successful candidates will have an emerging research track record in all areas of cognitive neuroscience, particularly with practical experience of neuroimaging and fMRI, and/or cognitive science, including experimental cognitive psychology and computational modelling. Their research interests should align with the department's existing research themes: Perception, Attention, Action and Emotion; Cognitive Computational Modelling; Brain and Cognitive Development; and Health and Lived Experience.
Mingbo Cai
The primary focus of this position is to work on an exciting collaborative project of decoding spontaneous thoughts. The intended project focuses on understanding the contents and dynamics of spontaneous thoughts using fMRI decoding and natural tasks, their interaction with memory and emotion, and rumination in mental disorders. The candidate will have the opportunity to analyze a rich fMRI dataset of healthy and clinical participants during spontaneous thoughts, and conduct new experiments.
Mingbo Cai
The Cognitive and Behavioral Neuroscience Division at Department of Psychology, University of Miami seeks highly motivated and creative Ph.D. students in our efforts to understand the brain and mind. Applications for entry in the Fall of 2025 are now being accepted, with a deadline of December 1st. For details, including contact information, please visit https://www.psy.miami.edu/graduate/how-to-apply/index.html. The Cognitive and Behavioral Neuroscience Division at Department of Psychology, University of Miami offers a unique program of study spanning neurobiology, behavior, computational and brain imaging research on topics of emotion, mindfulness, learning and memory, mental disorders and health. A listing of faculty affiliated with the division can be found online at https://www.psy.miami.edu/research/faculty-research/index.html and below.
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives
Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake
Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.
Digital Minds: Brain Development in the Age of Technology
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, this seminar delves into the latest research on how technology influences brain development, relationships, and emotional well-being. Join us to explore strategies for harnessing technology's benefits while mitigating its potential challenges, empowering you to thrive in a digital age.
Circuit Mechanisms of Remote Memory
Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.
Neural mechanisms governing the learning and execution of avoidance behavior
The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.
Gender, trait anxiety and attentional processing in healthy young adults: is a moderated moderation theory possible?
Three studies conducted in the context of PhD work (UNIL) aimed at proving evidence to address the question of potential gender differences in trait anxiety and executive control biases on behavioral efficacy. In scope were male and female non-clinical samples of adult young age that performed non-emotional tasks assessing basic attentional functioning (Attention Network Test – Interactions, ANT-I), sustained attention (Test of Variables of Attention, TOVA), and visual recognition abilities (Object in Location Recognition Task, OLRT). Results confirmed the intricate nature of the relationship between gender and health trait anxiety through the lens of their impact on processing efficacy in males and females. The possibility of a gendered theory in trait anxiety biases is discussed.
The Role of Cognitive Appraisal in the Relationship between Personality and Emotional Reactivity
Emotion is defined as a rapid psychological process involving experiential, expressive and physiological responses. These emerge following an appraisal process that involves cognitive evaluations of the environment assessing its relevance, implication, coping potential, and normative significance. It has been suggested that changes in appraisal processes lead to changes in the resulting emotional nature. Simultaneously, it was demonstrated that personality can be seen as a predisposition to feel more frequently certain emotions, but the personality-appraisal-emotional response chain is rarely fully investigated. The present project thus sought to investigate the extent to which personality traits influence certain appraisals, which in turn influence the subsequent emotional reactions via a systematic analysis of the link between personality traits of different current models, specific appraisals, and emotional response patterns at the experiential, expressive, and physiological levels. Major results include the coherence of emotion components clustering, and the centrality of the pleasantness, coping potential and consequences appraisals, in context; and the differentiated mediating role of cognitive appraisal in the relation between personality and the intensity and duration of an emotional state, and autonomic arousal, such as Extraversion-pleasantness-experience, and Neuroticism-powerlessness-arousal. Elucidating these relationships deepens our understanding of individual differences in emotional reactivity and spot routes of action on appraisal processes to modify upcoming adverse emotional responses, with a broader societal impact on clinical and non-clinical populations.
Modeling idiosyncratic evaluation of faces
Impact of personality profiles on emotion regulation efficiency: insights on experience, expressivity and physiological arousal
People are confronted every day with internal or external stimuli that can elicit emotions. In order to avoid negative ones, or to pursue individual aims, emotions are often regulated. The available emotion regulation strategies have been previously described as efficient or inefficient, but many studies highlighted that the strategies’ efficiency may be influenced by some different aspects such as personality. In this project, the efficiency of several strategies (e.g., reappraisal, suppression, distraction, …) has been studied according to personality profiles, by using the Big Five personality model and the Maladaptive Personality Trait Model. Moreover, the strategies’ efficiency has been tested according to the main emotional responses, namely experience, expressivity and physiological arousal. Results mainly highlighted the differential impact of strategies on individuals and a slight impact of personality. An important factor seems however to be the emotion parameter we are considering, potentially revealing a complex interplay between strategy, personality, and the considered emotion response. Based on these outcomes, further clinical aspects and recommendations will be also discussed.
Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience
This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?
Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience
This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?
Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm
The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.
Piecing together the puzzle of emotional consciousness
Conscious emotional experiences are very rich in their nature, and can encompass anything ranging from the most intense panic when facing immediate threat, to the overwhelming love felt when meeting your newborn. It is then no surprise that capturing all aspects of emotional consciousness, such as intensity, valence, and bodily responses, into one theory has become the topic of much debate. Key questions in the field concern how we can actually measure emotions and which type of experiments can help us distill the neural correlates of emotional consciousness. In this talk I will give a brief overview of theories of emotional consciousness and where they disagree, after which I will dive into the evidence proposed to support these theories. Along the way I will discuss to what extent studying emotional consciousness is ‘special’ and will suggest several tools and experimental contrasts we have at our disposal to further our understanding on this intriguing topic.
Perceptions of responsiveness and rejection in romantic relationships. What are the implications for individuals and relationship functioning?
From birth, human beings need to be embedded into social ties to function best, because other individuals can provide us with a sense of belonging, which is a fundamental human need. One of the closest bonds we build throughout our life is with our intimate partners. When the relationship involves intimacy and when both partners accept and support each other’s needs and goals (through perceived responsiveness) individuals experience an increase in relationship satisfaction as well as physical and mental well-being. However, feeling rejected by a partner may impair the feeling of connectedness and belonging, and affect emotional and behavioural responses. When we perceive our partner to be responsive to our needs or desires, in turn we naturally strive to respond positively and adequately to our partner’s needs and desires. This implies that individuals are interdependent, and changes in one partner prompt changes in the other. Evidence suggests that partners regulate themselves and co-regulate each other in their emotional, psychological, and physiological responses. However, such processes may threaten the relationship when partners face stressful situations or interactions, like the transition to parenthood or rejection. Therefore, in this presentation, I will provide evidence for the role of perceptions of being accepted or rejected by a significant other on individual and relationship functioning, while considering the contextual settings. The three studies presented here explore romantic relationships, and how perceptions of rejection and responsiveness from the partner impact both individuals, their physiological and their emotional responses, as well as their relationship dynamics.
Vocal emotion perception at millisecond speed
The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.
Freeze or flee ? New insights from rodent models of autism
Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.
From pecking order to ketamine - neural mechanism of social and emotional behavior
Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.
From pecking order to ketamine - neural mechanism of social and emotional behavior
Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.
Studies on the role of relevance appraisal in affect elicitation
A fundamental question in affective sciences is how the human mind decides if, and in what intensity, to elicit an affective response. Appraisal theories assume that preceding the affective response, there is an evaluation stage in which dimensions of an event are being appraised. Common to most appraisal theories is the assumption that the evaluation phase involves the assessment of the stimulus’ relevance to the perceiver’s well-being. In this talk, I first discuss conceptual and methodological challenges in investigating relevance appraisal. Next, I present two lines of experiments that ask how the human mind uses information about objective and subjective probabilities in the decision about the intensity of the emotional response and how these are affected by the valence of the event. The potential contribution of the results to appraisal theory is discussed.
Targeting Maladaptive Emotional Memories to Treat Mental Health Disorders: Insights from Rodent Models
Maladaptive emotional memories contribute to the persistence of numerous mental health disorders, including post-traumatic stress disorder (PTSD), drug addiction and obsessive-compulsive disorder (OCD). Using rodent behavioural models of the psychological processes relevant to these disorders, it is possible to identify potential treatment targets for the development of new therapies, including those based upon disrupting the reconsolidation of maladaptive emotional memories. Using examples from rodent models relevant to multiple mental health disorders, this talk will consider some of the opportunities and challenges that this approach provides.
A new science of emotion: How brain-mind-body processes form functional neurological disorder
One of the most common medical conditions you’ve (maybe) never heard of – functional neurological disorder – lays at the interface of neurology and psychiatry and offers a window into fundamental brain-mind-body processes. Across ancient and modern times, functional neurological disorder has had a long and tumultuous history, with an evolving debate and understanding of how biopsychosocial factors contribute to the manifestation of the disorder. A central issue in contemporary discussions has revolved around questioning the extent to which emotions play a mechanistic and aetiological role in functional neurological disorder. Critical in this context, however, is that this ongoing debate has largely omitted the question of what emotions are in the first place. This talk first brings together advances in the understanding of working principles of the brain fundamental to introducing a new understanding of what emotions are. Building on recent theoretical frameworks from affective neuroscience, the idea of how the predictive process of emotion construction can be an integral component of the pathophysiology of functional neurological disorder is discussed.
Establishment and aging of the neuronal DNA methylation landscape in the hippocampus
The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.
Integrative Neuromodulation: from biomarker identification to optimizing neuromodulation
Why do we make decisions impulsively blinded in an emotionally rash moment? Or caught in the same repetitive suboptimal loop, avoiding fears or rushing headlong towards illusory rewards? These cognitive constructs underlying self-control and compulsive behaviours and their influence by emotion or incentives are relevant dimensionally across healthy individuals and hijacked across disorders of addiction, compulsivity and mood. My lab focuses on identifying theory-driven modifiable biomarkers focusing on these cognitive constructs with the ultimate goal to optimize and develop novel means of neuromodulation. Here I will provide a few examples of my group’s recent work to illustrate this approach. I describe a series of recent studies on intracranial physiology and acute stimulation focusing on risk taking and emotional processing. This talk highlights the subthalamic nucleus, a common target for deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder. I further describe recent translational work in non-invasive neuromodulation. Together these examples illustrate the approach of the lab highlighting modifiable biomarkers and optimizing neuromodulation.
Does subjective time interact with the heart rate?
Decades of research have investigated the relationship between perception of time and heart rate with often mixed results. In search of such a relationship, I will present my far journey between two projects: from time perception in the realistic VR experience of crowded subway trips in the order of minutes (project 1); to the perceived duration of sub-second white noise tones (project 2). Heart rate had multiple concurrent relationships with subjective temporal distortions for the sub-second tones, while the effects were lacking or weak for the supra-minute subway trips. What does the heart have to do with sub-second time perception? We addressed this question with a cardiac drift-diffusion model, demonstrating the sensory accumulation of temporal evidence as a function of heart rate.
Social attention & emotion: invasive neurophysiology & white matter pathway studies
Two sides of emotion expressions: Readouts and Regulators
The Effects of Negative Emotions on Mental Representation of Faces
Face detection is an initial step of many social interactions involving a comparison between a visual input and a mental representation of faces, built from previous experience. Whilst emotional state was found to affect the way humans attend to faces, little research has explored the effects of emotions on the mental representation of faces. Here, we examined the specific perceptual modulation of geometric properties of the mental representations associated with state anxiety and state depression on face detection, and to compare their emotional expression. To this end, we used an adaptation of the reverse correlation technique inspired by Gosselin and Schyns’, (2003) ‘Superstitious Approach’, to construct visual representations of observers’ mental representations of faces and to relate these to their mental states. In two sessions, on separate days, participants were presented with ‘colourful’ noise stimuli and asked to detect faces, which they were told were present. Based on the noise fragments that were identified as faces, we reconstructed the pictorial mental representation utilised by each participant in each session. We found a significant correlation between the size of the mental representation of faces and participants’ level of depression. Our findings provide a preliminary insight about the way emotions affect appearance expectation of faces. To further understand whether the facial expressions of participants’ mental representations reflect their emotional state, we are conducting a validation study with a group of naïve observers who are asked to classify the reconstructed face images by emotion. Thus, we assess whether the faces communicate participants’ emotional states to others.
Biological and experience-based trajectories in adolescent brain and cognitive development
Adolescent development is not only shaped by the mere passing of time and accumulating experience, but it also depends on pubertal timing and the cascade of maturational processes orchestrated by gonadal hormones. Although individual variability in puberty onset confounds adolescent studies, it has not been efficiently controlled for. Here we introduce ultrasonic bone age assessment to estimate biological maturity and disentangle the independent effects of chronological and biological age on adolescent cognitive abilities, emotional development, and brain maturation. Comparing cognitive performance of participants with different skeletal maturity we uncover the impact of biological age on both IQ and specific abilities. With respect to emotional development, we find narrow windows of highest vulnerability determined by biological age. In terms of neural development, we focus on the relevance of neural states unrelated to sensory stimulation, such as cortical activity during sleep and resting states, and we uncover a novel anterior-to-posterior pattern of human brain maturation. Based on our findings, bone age is a promising biomarker of adolescent maturity.
Exploring emotion in the expression of ape gesture
Language appears to be the most complex system of animal communication described to date. However, its precursors were present in the communication of our evolutionary ancestors and are likely shared by our modern ape cousins. All great apes, including humans, employ a rich repertoire of vocalizations, facial expressions, and gestures. Great ape gestural repertoires are particularly elaborate, with ape species employing over 80 different gesture types intentionally: that is towards a recipient with a specific goal in mind. Intentional usage allows us to ask not only what information is encoded in ape gestures, but what do apes mean when they use them. I will discuss recent research on ape gesture, on how we approach the question of decoding meaning, and how with new methods we are starting to integrate long overlooked aspects of ape gesture such as group and individual variation, and expression and emotion into our study of these signals.
CNStalk: Involvement of the cerebellum in motor and emotional learning
Ebselen: a lithium-mimetic without lithium side-effects?
Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.
Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)
Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.
Faking emotions and a therapeutic role for robots and chatbots: Ethics of using AI in psychotherapy
In recent years, there has been a proliferation of social robots and chatbots that are designed so that users make an emotional attachment with them. This talk will start by presenting the first such chatbot, a program called Eliza designed by Joseph Weizenbaum in the mid 1960s. Then we will look at some recent robots and chatbots with Eliza-like interfaces and examine their benefits as well as various ethical issues raised by deploying such systems.
Neural mechanisms for memory and emotional processing during sleep
Remembering Immunity, Central regulation of peripheral immune processes
Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.
Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2
Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.
Brain and behavioural impacts of early life adversity
Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.
Emotions and Partner Phubbing: The Role of Understanding and Validation in Predicting Anger and Loneliness
Interactions between romantic partners may be disturbed by problematic mobile phone use, i.e., phubbing. Research shows that phubbing reduces the ability to be responsive, but emotional aspects of phubbing, such as experiences of anger and loneliness, have not been explored. Anger has been linked to partner blame in negative social interactions, whereas loneliness has been associated with low social acceptance. Moreover, two aspects of partner responsiveness, understanding and validation, refer to the ability to recognize partner’s perspective and convey acceptance of their point of view, respectively. High understanding and validation by partner have been found to prevent from negative affect during social interaction. The impact of understanding and validation on emotions has not been investigated in the context of phubbing, therefore we posit the following exploratory hypotheses. (1) Participants will report higher levels of anger and loneliness on days with phubbing by partner, compared to days without; (2) understanding and validation will moderate the relationship between phubbing intensity and levels of anger and loneliness. We conducted a daily diary study over seven days. Based on a sample of 133 participants in intimate relationships and living with their partners, we analyzed the nested within and between-person data using multilevel models. Participants reported higher levels of anger and loneliness on days they experienced phubbing. Both, understanding and validation, buffer the relationship between phubbing intensity and negative experiences, and the interaction effects indicate certain nuances between the two constructs. Our research provides a unique insight into how specific mechanisms related to couple interactions may explain experiences of anger and loneliness.
Brain-body interactions that modulate fear
In most animals including in humans, emotions occur together with changes in the body, such as variations in breathing or heart rate, sweaty palms, or facial expressions. It has been suggested that this interoceptive information acts as a feedback signal to the brain, enabling adaptive modulation of emotions that is essential for survival. As such, fear, one of our basic emotions, must be kept in a functional balance to minimize risk-taking while allowing for the pursuit of essential needs. However, the neural mechanisms underlying this adaptive modulation of fear remain poorly understood. In this talk, I want to present and discuss the data from my PhD work where we uncover a crucial role for the interoceptive insular cortex in detecting changes in heart rate to maintain an equilibrium between the extinction and maintenance of fear memories in mice.
Brain-visceral interactions in perception, cognition, emotion and consciousness
fMRI of cognitive reappraisal, acceptance, and suppression emotion regulation strategies in basic and clinically applied contexts
The ability to effectively regulate emotions is a fundamental skill related to physical and psychological health. In this talk, I will present behavioral and fMRI data from several different studies that examined cognitive reappraisal, acceptance, and suppression emotion regulation strategies in healthy controls participants and in the context of randomized trials of cognitive behavioral therapy, mindfulness- based stress reduction, and aerobic exercise as interventions for adults with anxiety disorders. We will also examine the implementation of different types of functional connectivity analytic approaches to probe intervention-related brain mechanism changes.
Do heart rate oscillations enhance function of emotion networks in the brain
Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate
Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.
Acting on our instincts: understanding emotional decision-making
Emotions are constructed of more basic networks
It has long been assumed that certain “basic” emotions emerge from anatomically ingrained circuits. Yet growing research suggests that emotions emerge from more basic networks that comprise the brain’s basic functional architecture. In this talk, I’ll discuss evidence that human emotional experiences are associated with the co-activation of broadscale networks subserving psychological functions that are not specific to emotion.
Multimodal framework and fusion of EEG, graph theory and sentiment analysis for the prediction and interpretation of consumer decision
The application of neuroimaging methods to marketing has recently gained lots of attention. In analyzing consumer behaviors, the inclusion of neuroimaging tools and methods is improving our understanding of consumer’s preferences. Human emotions play a significant role in decision making and critical thinking. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition.Affective neuroscience research can help in detecting emotions when a consumer responds to an advertisement. Successful emotional elicitation is a verification of the effectiveness of an advertisement. EEG provides a cost effective alternative to measure advertisement effectiveness while eliminating several drawbacks of the existing market research tools which depend on self-reporting. We used Graph theoretical principles to differentiate brain connectivity graphs when a consumer likes a logo versus a consumer disliking a logo. The fusion of EEG and sentiment analysis can be a real game changer and this combination has the power and potential to provide innovative tools for market research.
Keeping the balance- A role for the insular cortex in emotion homeostasis
Astrocytes and oxytocin interaction regulates amygdala neuronal network activity and related behaviors”
Oxytocin orchestrates social and emotional behaviors through modulation of neural circuits in brain structures such as the central amygdala (CeA). In this structure, the release of oxytocin modulates inhibitory circuits and subsequently suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function approaches and pharmacology, we demonstrate that oxytocin signaling in the central amygdala relies on a subpopulation of astrocytes that represent a prerequisite for proper function of CeA circuits and adequate behavioral responses, both in rats and mice. Our work identifies astrocytes as crucial cellular intermediaries of oxytocinergic modulation in emotional behaviors related to anxiety or positive reinforcement. To our knowledge, this is the first demonstration of a direct role of astrocytes in oxytocin signaling and challenges the long-held dogma that oxytocin signaling occurs exclusively via direct action on neurons in the central nervous system.
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
“Mind reading” with brain scanners: Facts versus science fiction
Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.
CrossTalk: Conversations at the Intersection of Science and Art
Anjan Chatterjee is a Professor of Neurology, Psychology, and Architecture and the founding Director of the Penn Center for Neuroaesthetics. His research explores the field of neuroaesthetics: how our brain experiences and responds to art. Lucas Kelly is a renowned visual artist, with work featured across several solo and group exhibitions, most notably in the survey of abstract painting “The Painted World” at PS1 Museum of Modern Art. As the inaugural Artist in Residence for the Penn Center for Neuroaesthetics, Lucas has collaborated with Anjan on a forthcoming exhibition, considering the emotions involved in aesthetic engagement informed by research. This event will feature a moderated conversation between Anjan and Lucas, discussing topics at the intersection of neuroscience and experience of visual art.
Music training effects on multisensory and cross-sensory transfer processing: from cross-sectional to RCT studies
Active sleep in flies: the dawn of consciousness
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.
Untitled Seminar
Multi-scale synaptic analysis for psychiatric/emotional disorders
Dysregulation of emotional processing and its integration with cognitive functions are central features of many mental/emotional disorders associated both with externalizing problems (aggressive, antisocial behaviors) and internalizing problems (anxiety, depression). As Dr. Joseph LeDoux, our invited speaker of this program, wrote in his famous book “Synaptic self: How Our Brains Become Who We Are”—the brain’s synapses—are the channels through which we think, act, imagine, feel, and remember. Synapses encode the essence of personality, enabling each of us to function as a distinctive, integrated individual from moment to moment. Thus, exploring the functioning of synapses leads to the understanding of the mechanism of (patho)physiological function of our brain. In this context, we have investigated the pathophysiology of psychiatric disorders, with particular emphasis on the synaptic function of model mice of various psychiatric disorders such as schizophrenia, autism, depression, and PTSD. Our current interest is how synaptic inputs are integrated to generate the action potential. Because the spatiotemporal organization of neuronal firing is crucial for information processing, but how thousands of inputs to the dendritic spines drive the firing remains a central question in neuroscience. We identified a distinct pattern of synaptic integration in the disease-related models, in which extra-large (XL) spines generate NMDA spikes within these spines, which was sufficient to drive neuronal firing. We experimentally and theoretically observed that XL spines negatively correlated with working memory. Our work offers a whole new concept for dendritic computation and network dynamics, and the understanding of psychiatric research will be greatly reconsidered. The second half of my talk is the development of a novel synaptic tool. Because, no matter how beautifully we can illuminate the spine morphology and how accurately we can quantify the synaptic integration, the links between synapse and brain function remain correlational. In order to challenge the causal relationship between synapse and brain function, we established AS-PaRac1, which is unique not only because it can specifically label and manipulate the recently potentiated dendritic spine (Hayashi-Takagi et al, 2015, Nature). With use of AS-PaRac1, we developed an activity-dependent simultaneous labeling of the presynaptic bouton and the potentiated spines to establish “functional connectomics” in a synaptic resolution. When we apply this new imaging method for PTSD model mice, we identified a completely new functional neural circuit of brain region A→B→C with a very strong S/N in the PTSD model mice. This novel tool of “functional connectomics” and its photo-manipulation could open up new areas of emotional/psychiatric research, and by extension, shed light on the neural networks that determine who we are.
Estimation of current and future physiological states in insular cortex
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.
Contrasting neuronal circuits driving reactive and cognitive fear
The last decade in the field of neuroscience has been marked by intense debate on the meaning of the term fear. Whereas some have argued that fear (as well as other emotions) relies on cognitive capacities that are unique to humans, others view it as a negative state constructed from essential building blocks. This latter definition posits that fear states are associated with varying readouts that one could consider to be parallel processes or serial events tied to a specific hierarchy. Within this framework, innate defensive behaviors are considered to be common displays of fear states that lie under the control of hard-wired brain circuits. As a general rule, these defensive behaviors can be classified as either reactive or cognitive based on a thread imminence continuum. However, while evidence of the neuronal circuits that lead to these divergent behavioral strategies has accrued over the last decades, most literature has considered these responses in isolation. As a result, important misconceptions have arisen regarding how fear circuits are distributed in the brain and the contribution of specific nodes within these circuits to defensive behaviors. To mitigate the status quo, I will conduct a systematic comparison of brain circuits driving the expression of freezing and active avoidance behavior, which I will use as well-studied proxies of reactive and cognitive fear, respectively. In addition, I propose that by integrating associative information with interoceptive and exteroceptive signals the central nucleus of the amygdala plays a crucial role in biasing the selection of defensive behaviors.
Leveraging computational and animal models of vision to probe atypical emotion recognition in autism
COSYNE 2023
Assessing the effects of mindful breathing on learning and emotions in primary school students
FENS Forum 2024
The association of emotion dysregulation in the occurrence of depression and suicidal behaviors in a sub-Saharan sample of university students
FENS Forum 2024
Behavioral correlates of parent-infant dyadic emotional synchrony and association with child socioemotional development
FENS Forum 2024
Cerebellar neuronal activity during emotional control and the role of cerebellar-mPFC pathway in fear learning
FENS Forum 2024
Cerebellum and emotions: A journey from evidence to computational modeling and simulation
FENS Forum 2024
Disentangling emotional memories in ventral hippocampal circuits
FENS Forum 2024
Dorsal-ventral hippocampal coding of emotional experiences
FENS Forum 2024
Dynamical update of emotional value-based representations in prefrontal networks
FENS Forum 2024
Early offspring separation causes increased emotionality and long-term changes in the brain CRF system of lactating rats
FENS Forum 2024
Effects of parenting behaviors on children’s and young adults' emotion regulatory brain structure
FENS Forum 2024
Emotion regulation across dimensions of emotional response: A multimodal comparison of emotion regulation strategies
FENS Forum 2024
Emotional contagion and helping behavior: Learning to be good recruits cell subpopulation in the dorsal hippocampus in mice
FENS Forum 2024
Emotional feature representation in prefrontal ensemble dynamics
FENS Forum 2024
Emotional and blood-brain barrier alterations precede cognitive dysfunction in a mouse model of Alzheimer's disease
FENS Forum 2024
Emotional memory reactivation supports flexible sleep strategies
FENS Forum 2024
Emotions modulation on interbrain dynamics
FENS Forum 2024
Exploring the emotional side of ticklishness: Insights from insular neurons
FENS Forum 2024
High-resolution fMRI reveals an extensive cortical network responding to conspecific emotional vocalisations in macaques
FENS Forum 2024
Impact of olfactory food ingredients on emotional and digestive state
FENS Forum 2024
Impact of perinatal exposure to maternal western diet on offspring socioemotional behavior
FENS Forum 2024
The inside-out of emotion processing: Evaluating children and adults’ neural correlates from a novel fMRI movie-watching paradigm
FENS Forum 2024
Integration of autonomic readouts to study neural emotional states in freely moving mice
FENS Forum 2024
Methyldonor supplementation protects against early-life stress induced emotional dysregulation via modulation of hypothalamic DNA methylation
FENS Forum 2024
Modeling pain sensitivity in healthy individuals: The influence of emotional traits and resilience
FENS Forum 2024
Neural dynamics of processing natural and digital emotional vocalizations
FENS Forum 2024
Neurocognitive profiles of childhood maltreatment subtypes: Understanding the effects of childhood emotional abuse on the adult social brain
FENS Forum 2024
Non-invasive vagus nerve stimulation normalizes psychoemotional state shifting “sympatho-vagal balance”
FENS Forum 2024
The parabrachial nucleus recruits ventral tegmental area to convey negative emotions and disengage instrumental food seeking
FENS Forum 2024
Preconscious fear-like stimuli affect overt and covert emotional conscious processing
FENS Forum 2024
Processing of cardiac signals in the insular cortex is necessary for emotion state coding
FENS Forum 2024
Resolving decision-making during emotional conflicts by ventral hippocampal circuits
FENS Forum 2024
Rodent propionic acid model of autism: Emotional and ultrastructural changes in rat amygdala
FENS Forum 2024
The role of the mean diffusivity of the amygdala in the perception of emotional faces in 8-month-old infants
FENS Forum 2024
Role of the NPS system in fear extinction: Sex differences in emotional regulation in mice
FENS Forum 2024
Seeing is believing? Influences of political views and emotions on authenticity perception of photojournalistic pictures
FENS Forum 2024
Unmet emotional predictions linger in the lateral orbitofrontal cortex during rest
FENS Forum 2024
Joint neural-cognitive modelling of free recall: using the LPP to model emotional memory
Neuromatch 5