← Back

Neuroscience

Topic spotlight
TopicWorld Wide

Neuroscience

Discover seminars, jobs, and research tagged with Neuroscience across World Wide.
110 curated items60 Seminars25 Positions19 ePosters6 Conferences
Updated in 4 days
110 items · Neuroscience
110 results
SeminarNeuroscience

Computational Mechanisms of Predictive Processing in Brains and Machines

Dr. Antonino Greco
Hertie Institute for Clinical Brain Research, Germany
Dec 9, 2025

Predictive processing offers a unifying view of neural computation, proposing that brains continuously anticipate sensory input and update internal models based on prediction errors. In this talk, I will present converging evidence for the computational mechanisms underlying this framework across human neuroscience and deep neural networks. I will begin with recent work showing that large-scale distributed prediction-error encoding in the human brain directly predicts how sensory representations reorganize through predictive learning. I will then turn to PredNet, a popular predictive coding inspired deep network that has been widely used to model real-world biological vision systems. Using dynamic stimuli generated with our Spatiotemporal Style Transfer algorithm, we demonstrate that PredNet relies primarily on low-level spatiotemporal structure and remains insensitive to high-level content, revealing limits in its generalization capacity. Finally, I will discuss new recurrent vision models that integrate top-down feedback connections with intrinsic neural variability, uncovering a dual mechanism for robust sensory coding in which neural variability decorrelates unit responses, while top-down feedback stabilizes network dynamics. Together, these results outline how prediction error signaling and top-down feedback pathways shape adaptive sensory processing in biological and artificial systems.

Position

Eugenio Piasini

International School for Advanced Studies (SISSA)
Trieste
Dec 5, 2025

Up to 6 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2024. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience group (https://phdcns.sissa.it/) hosts 7 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language and reading, tactile perception and learning, and neural computation. Our research is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. This year, one of the PhD scholarships is set aside for joint PhD projects across PhD programs within the Neuroscience department (https://www.sissa.it/research/neuroscience). The selection procedure is now open. The application deadline is 28 March 2024. To learn how to apply, please visit https://phdcns.sissa.it/admission-procedure . Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

Position

Dr Agostina Palmigiano

Gatsby Computational Neuroscience Unit at UCL
London, UK
Dec 5, 2025

The Gatsby Unit invites applications for a postdoctoral training fellowship under Dr Agostina Palmigiano, focussed on developing theoretical approaches to investigate the mechanisms underlying sensory, motor or cognitive computations. You will be responsible for the primary execution of the project (with opportunities for co-supervision of students), presentation of results at conferences and seminars, and publication in suitable media. This post is initially funded for 2 years with the possibility of a one-year extension at the end of the period. For detailed information on the role and how to apply, please visit www.ucl.ac.uk/gatsby/vacancies under 'Research Fellow (Palmigiano group)'. Agostina will also be at COSYNE 2024 between 29 February and 5 March. Please get in touch to set up informal chats with her if interested!

Position

University of Bristol

University of Bristol
Bristol, United Kingdom
Dec 5, 2025

The role The School of Engineering Mathematics and Technology at the University of Bristol is seeking to appoint a Senior Lecturer / Associate Professor whose research encompasses neural computation, machine learning and AI. If you are earlier in your career the post is also available at Lecturer level. The University of Bristol is an exciting centre for research into the nature of computation and inference in humans, animals and machines. Our computational neuroscience group has made important contributions in, for example, Bayesian approaches to data and inference, biomimetic deep learning, anatomically-constrained neural networks and the theory of neural networks. The University has a long tradition of cross-disciplinary research and Computational Neuroscience is part of both the Bristol Neuroscience Network and the Intelligent Systems Group; we are recognised for our central role in the local neuroscience and machine learning/AI communities. You would be joining the University at an exciting time as we embark on a £500M investment in our new campus and while we create a home for the UK’s AI Research Resource with the UK’s most powerful supercomputer. We are committed to an inclusive and diverse environment where everyone can thrive. We welcome applicants from all backgrounds, especially those from under-represented communities. We offer flexible working arrangements to help balance professional and personal commitments. What will you be doing? You will conduct research at the interface between computational neuroscience and machine learning and contribute to the associated teaching on our degree programmes and to academic administration. You will take part in our lively research community and join our internationally renowned researchers in producing high-quality research with the potential to secure research funding.

Position

Sander Nieuwenhuis

Leiden University
Leiden, the Netherlands
Dec 5, 2025

Assistant Professor in Cognitive Science and Artificial Intelligence at Leiden University The Cognitive Psychology Unit at Leiden University (the Netherlands) is inviting candidates to apply for an assistant professor position in cognitive science and artificial intelligence. The position will result in tenure, conditional on a positive probation period of 12-18 months. For the advertisement and application procedure, see https://www.universiteitleiden.nl/vacatures/2023/q1/13483-assistant-professor-in-cognitive-science-and-artificial-intelligence

Position

Sander Nieuwenhuis

Leiden University
Leiden University, the Netherlands
Dec 5, 2025

Assistant Professor in Cognitive Psychology and Neuroscience at Leiden University The Cognitive Psychology Unit at Leiden University (the Netherlands) is inviting candidates to apply for an assistant professor position in cognitive psychology and neuroscience. The position will result in tenure, conditional on a positive probation period of 12-18 months. For the advertisement and application procedure, see https://www.universiteitleiden.nl/vacatures/2023/q1/13481-assistant-professor-in-cognitive-psychology-and-neuroscience

Position

Cognitive Neuroscience PhD program @ SISSA

International School for Advanced Studies (SISSA)
Trieste, Italy
Dec 5, 2025

Up to 6 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2023. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience Department (https://phdcns.sissa.it/) hosts 7 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language and reading, tactile perception and learning, and neural computation. The Department is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. The selection procedure is now open. The first application deadline is 31 March 2023. To learn how to apply, please visit https://phdcns.sissa.it/admission-procedure. Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

Position

Prof. Li Zhaoping

Max-Planck-Institute for Biological Cybernetics and University of Tuebingen
Tuebingen, Germany
Dec 5, 2025

The Department for Sensory and Sensorimotor Systems of the Max-Planck-Institute for Biological Cybernetics studies the processing of sensory information (visual, auditory, tactile, olfactory) in the brain and the use of this information for directing body movements and making cognitive decisions. The research is highly interdisciplinary and uses theoretical and experimental approaches in humans. Our methodologies include visual psychophysics, eye tracking, fMRI, EEG, TMS in humans. For more information, please visit the department website: www.lizhaoping.org We are currently looking for a Research Operation Assistant with Scientific Experience (m/f/d) 100% to join us at the next possible opportunity. The position: You will provide hardware, software and managerial support for a diverse set of brain and neuroscience research activities. This includes: • Computer and IT support of Windows and Linux systems • Programming and debugging of computer code, especially at the stage of setting up new equipment or new experimental platforms • Provide technical, administrative, and operational support in the research data taking and analysis process. (The position holder should have the ability to quickly learn the data taking processes involved in the labs.) • Responsibility and free decision for purchases of laboratory equipment out to tender and evaluation of quotes with final decision making • Hardware repairs and troubleshooting including consultation of manufacturers, deliverers and scientific staff • Equipment setting up, inventory and maintenance • Supervising and training of new equipment users • Setting up, updating and managing the database of knowledge and data from research projects, personnel and activities to ensure smooth transition from one to another team member Our department is interdisciplinary, with research activities including human visual psychophysics, eye tracking, fMRI, EEG, TMS. We are looking for a person with a broad technical knowledge base, who loves working in a scientific environment and who is curious, open-minded, and able to adapt and learn new skills and solve new problems quickly. The set of skills that the individual should either already have or can quickly learn includes: MATLAB/Psychotoolbox, Python/OpenCV, Julia/OpenGL, Java, graphics and display technologies, EEG equipment and similar, eye tracking, optics, electronics/controllers/sensors, Arduino/Raspberry Pi, etc. We offer: We offer highly interesting, challenging and varied tasks; you will work closely and collaboratively with scientists, students, programmers, administrative staff, and central IT and mechanical/electronic workshop support to help achieve the scientific goals of the department. A dedicated team awaits you in an international environment with regular opportunities for further education and training. The salary is paid in accordance with the collective agreement for the public sector (TVöD Bund), based on qualification and experience and will include social security benefits and additional fringe benefits in accordance with public service provisions. This position is initially limited to two years, with the possibility of extensions and a permanent contract. The Max Planck Society seeks to employ more handicapped people and strongly encourages them to apply. Furthermore, we actively support the compatibility of work and family life. The Max Planck Society also seeks to increase the number of women in leadership positions and strongly encourages qualified women to apply. The Max Planck Society strives for gender equality and diversity. Your application The position is available immediately and will be open until filled. Preference will be given to applications received by April 3rd, 2023. We look forward to receiving your application that includes a cover letter, your curriculum vitae, relevant certificates, and three names and contacts for reference letters electronically by e-mail to jobs.li@tuebingen.mpg.de, where informal inquiries can also be addressed to. Please note that incomplete applications will not be considered. For further opportunities in our group, please visit http://www.lizhaoping.org/jobs.html.

Position

Dr. Amy Margolis

Columbia University Medical Center
New York, NY
Dec 5, 2025

The Environment, Brain, and Behavior (EBB) Lab for Developmental Visual-Spatial and Learning Disorders is located in the Division of Child and Adolescent Psychiatry at Columbia University Medical Center in New York City. Directed by Dr. Amy Margolis, the EBB lab studies the neurobiology of Non-Verbal Learning Disorder and how exposure to neurotoxic chemicals may affect neurodevelopment and manifest as learning and social problems. The EBB Lab uses neuroimaging to identify biomarkers of exposure to neurotoxicants and aid in the development of prevention and intervention programs to improve children's health outcomes.

Position

Dr Nicoletta Nicolaou

University of Nicosia Medical School
Nicosia, Cyprus
Dec 5, 2025

The PhD in Medical Sciences: The University of Nicosia Medical School offers the degree PhD in Medical Sciences. The degree is awarded to students who successfully complete an independent research programme that breaks new ground in the chosen field of study. The PhD programme aspires to empower students to become independent researchers, thus advancing innovation and development. The Research Project: We are currently inviting application through a competitive process for high calibre candidates to apply for one PhD Scholarship in the fields of Neuroscience and Biomedical Engineering. The successful candidate will enrol on the PhD programme in Medical Sciences and will work under the Supervision of Dr Nicoletta Nicolaou with expertise in the fields of Neuroscience and Biomedical Engineering at the University of Nicosia Medical School. Project Description: Title of research project: Development of a closed-loop controller for automatic administration of anaesthetic and analgesic agents during surgery using machine learning methods. Background and Rationale: Current practice of anaesthesia during surgery involves administration of a “cocktail” of drugs (anaesthetics, analgesics, myorelaxants) to achieve the desired state of surgical anaesthesia. During surgery the patient is connected to a number of sensors that monitor vital signs (e.g. cardiovascular parameters, breathing etc.). The anaesthesiologist monitors these vital signs (visually on the monitoring device) and makes manual adjustments to the dosages of the different agents (anaesthetics, analgesics, muscle relaxants). In this open-loop approach the anaesthesiologist is effectively the one who manually closes the loop. The disadvantages of this open-loop approach are related mainly to the fact that the anaesthesiologist monitors the vital signs and is required to make a judgement call based on these visual observations as to whether or not adjustments are required to the dosages of the agents administered. These vital signs provide clues as to the underlying patient state, but they are not considered to be reliable indicators of the underlying “level of consciousness” or “depth of anaesthesia”. In a closed-loop system, the loop is closed automatically: the patient state is estimated from the patient vital signs, and the dosages of agents are adjusted automatically by the device. The anaesthesiologist is not part of the automated closed loop, but still has the ability to bypass this automation and intervene manually. Closed-loop (CL) systems provide better stability of cardiovascular parameters (longer duration of heart rate and mean arterial pressure control), better performance and faster recovery compared to open-loop systems. The development of a CL anaesthetic administration system is a very complex process that must integrate information from a number of biological signals coming from the central and autonomic nervous systems. To date there are only a handful of CL systems that have been developed, but not yet routinely available for commercial use in routine surgery. Aims and Objectives: In this PhD Research Project, a CL system for automatic agent administration during surgery under general anaesthesia will be developed and simulated, using machine learning methods. The system will utilize features from the central and autonomic nervous systems (CNS and ANS respectively) for discrimination between awareness, anaesthesia and different levels of anaesthesia (light, surgical, deep anaesthesia). The system will offer improved anaesthetic experience that will be individualized, leading to a better experience (e.g. maintenance at surgical anaesthetic level, stability of cardiovascular activity, less time in recovery, minimal side effects from over-anaesthesia, faster release from hospital). The main aims and objectives of this PhD research project are: 1. Characterize the relationships of real brain and brain-cardiovascular data recorded during surgeries under general anaesthesia using machine learning methods, as well as the relationships between these physiological signals and concentration of anaesthetic and analgesic agents. 2. Develop a closed-loop controller that utilizes the developed machine learning models to automatically modify the volume of anaesthetics and analgesics to achieve and maintain a desired level of (un)consciousness. 3. Develop a simulation that maps an observed or desired anaesthetic state to specific anaesthetic and analgesic dosages. 4. Test the performance of the developed machine learning controller on automatically modifying the anaesthetic and analgesic dosages to maintain a desired level of (un)consciousness as defined in the simulated data. The Scholarship: The Scholarship will have a duration of three to four years and will cover: • The tuition fees for the PhD programme which are €13,500 in total for the first 3 years and €1,500 for year 4. Application for the PhD Scholarship: Candidates should submit an online application through this link (https://www.med.unic.ac.cy/education/phd-in-medical-sciences/?utm_source=PhD-Scholarships-2022) and upload the following supporting documents: • A cover letter clearly stating that they apply for the PhD Scholarship in the fields of Neuroscience and Biomedical Engineering for the PhD Research Project ‘Development of a closed-loop controller for automatic administration of anaesthetic and analgesic agents during surgery using machine learning methods.’ • Copies of the applicant’s qualifications/degree(s) – the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Copies of the applicant’s transcript(s) - the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Proof of English language proficiency such as IELTS with a score of 7 overall and with a minimum score of 7 in writing or TOEFL iBT with a score of 94 overall and a minimum score of 27 in Writing. Other internationally recognized English language qualifications might be considered upon review. Students from the UK, Ireland USA, Canada (from English speaking provinces), Australia and New Zealand are exempt from the English language requirement. • Two reference letters, of which at least one should be from an academic. • A full Curriculum Vitae (CV). Applications should be submitted by Friday, July 29, 2022 at 5pm. Only fully completed applications, containing all necessary supporting documents will be reviewed. Please use reference number C2 next to your surname when you start your application. Only candidates who are shortlisted will be contacted and invited to an interview.

PositionNeuroscience

Dr Avgis Hajipapas

University of Nicosia Medical School
Nicosia, Cyprus
Dec 5, 2025

The PhD in Medical Sciences: The University of Nicosia Medical School offers the degree PhD in Medical Sciences. The degree is awarded to students who successfully complete an independent research programme that breaks new ground in the chosen field of study. The PhD programme aspires to empower students to become independent researchers, thus advancing innovation and development. The Research Project: We are currently inviting application through a competitive process for high calibre candidates to apply for one PhD Scholarship in the field of Neuroscience. The successful candidate will enrol on the PhD programme in Medical Sciences and will work under the Supervision of Prof Avgis Hadjipapas, Professor for Neuroscience and Research Methods at the University of Nicosia Medical School. The project is based on an international collaboration between the University of Nicosia Medical School, (UN) the University Maastricht University Medical Center (MUMC), Maastricht University (MU) and McGill University (McGill U). The project predominantly involves data-analysis (signal processing), which means that a large part of the project can be conducted remotely. Project Description: Title of research project: Characterization of circadian rhythm modulations in intracranial EEG and their relationship to seizure onsets in focal epilepsy Background, rationale and objectives: Epilepsy affects roughly 1% of the population, and about a third of patients have unpredictable seizures which cannot be adequately controlled with medication (Kuhlmann et al., 2018). Therefore, better understanding of seizure generation and improving seizure predictability are central goals in epilepsy research to prevent seizures from occurring. Recent investigations by our own (Mitsis et al., 2020) and other groups (Leguia et al., 2021) have shown that seizure onsets exhibit a tight correlation to certain phases of circadian rhythms, which leads to improved seizure predictability. However, our previous work (Mitsis et al., 2020) only utilized surface EEG. In this project, and based on a collaboration formed between the University of Nicosia Medical School (UN), Maastricht University Medical Center (MUMC), Maastricht University (MU), and McGill University (McGill U), we will address this question by examining intracranial recordings provided by the MUMC partner, obtained directly from the area of the suspected epileptogenic focus. We will first characterize in detail the circadian variation of signal parameters extracted from the intracranial EEG. We will then examine whether seizure onsets are phase coupled (correlated) to these circadian modulations. This will inform both important pathophysiological questions in terms of the extent of the functional seizure generating network. Further, analysis of this correlation at the level of individual patient recordings will inform the feasibility of seizure forecasting informed by circadian rhythms. Successful candidates will benefit from interacting with an international and interdisciplinary consortium of neuroscientists, neurologists and engineers throughout the duration of the project. References Karoly, P.J., Ung, H., Grayden, D.B., Kuhlmann, L., Leyde, K., Cook, M.J., Freestone, D.R., 2017. The circadian profile of epilepsy improves seizure forecasting. Brain 140, 2169–2182. https://doi.org/10.1093/brain/awx173 Kuhlmann, L., Lehnertz, K., Richardson, M.P., Schelter, B., Zaveri, H.P., 2018. Seizure prediction — ready for a new era. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-018-0055-2 Leguia, M.G., Andrzejak, R.G., Rummel, C., Fan, J.M., Mirro, E.A., Tcheng, T.K., Rao, V.R., Baud, M.O., 2021. Seizure Cycles in Focal Epilepsy. JAMA Neurol. In press, 1–10. https://doi.org/10.1001/jamaneurol.2020.5370 Mitsis, G.D., Anastasiadou, M.N., Christodoulakis, M., Papathanasiou, E.S., Papacostas, S.S., Hadjipapas, A., 2020. Functional brain networks of patients with epilepsy exhibit pronounced multiscale periodicities, which correlate with seizure onset. Hum. Brain Mapp. hbm.24930. https://doi.org/10.1002/hbm.24930 The Scholarship: The Scholarship will have a duration of three to four years and will cover: • The tuition fees for the PhD programme which are €13,500 in total for the first 3 years and €1,500 for year 4. • A monthly stipend of €1,000 for the duration of three to four years. Application for the PhD Scholarship: Candidates should submit an online application through this link and upload the following supporting documents: • A cover letter clearly stating that they apply for the PhD Scholarship in the field of Neuroscience for the PhD Research Project ‘Characterization of circadian rhythm modulations in intracranial EEG and their relationship to seizure onsets in focal epilepsy.’ • Copies of the applicant’s qualifications/degree(s) – the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Copies of the applicant’s transcript(s) - the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Proof of English language proficiency such as IELTS with a score of 7 overall and with a minimum score of 7 in writing or TOEFL iBT with a score of 94 overall and a minimum score of 27 in Writing. Other internationally recognized English language qualifications might be considered upon review. Students from the UK, Ireland USA, Canada (from English speaking provinces), Australia and New Zealand are exempt from the English language requirement. • Two reference letters, of which at least one should be from an academic. • A full Curriculum Vitae (CV). Applications should be submitted by Friday, July 29, 2022 at 5pm. Only fully completed applications, containing all necessary supporting documents will be reviewed. Only candidates who are shortlisted will be contacted and invited to an interview.

Position

Ing. Mgr. Jaroslav Hlinka, Ph.D.

Institute of Computer Science of the Czech Academy of Sciences
Prague, Czech Republic
Dec 5, 2025

Research Fellow / Postdoc positions in Complex Networks and Brain Dynamics We are looking for new team members to join the Complex Networks and Brain Dynamics group to work on its interdisciplinary projects. The group is part of the Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences - based in Prague, Czech Republic, https://www.cs.cas.cz/. We focus on the development and application of methods of analysis and modelling of real-world complex networked systems, with particular interest in the structure and dynamics of human brain function. Our main research areas are neuroimaging data analysis (fMRI & EEG, iEEG, anatomical and diffusion MRI), brain dynamics modelling, causality and information flow inference, nonlinearity and nonstationarity, graph theory, machine learning and multivariate statistics; with applications in neuroscience, climate research, economics and general communication networks. More information about the group at http://cobra.cs.cas.cz/. Conditions: • Contract is for 6-24 months duration. • Positions are available immediately or upon agreement. • Applications will be reviewed on a rolling basis with a first cut-off point on 30. 09. 2022, until the positions are filled. • This is a full-time fixed term contract appointment. Part time contract negotiable. • Monthly gross salary: 42 000 – 55 000 CZK based on qualifications and experience. Cost Of Living Comparison • Bonuses and travel funding for conferences and research stays depending on performance. • No teaching duties.

Position

Prof. Max Ortiz Catalan, PhD

Chalmers University of Technology
Gothenburg, Sweden
Dec 5, 2025

This position includes translational research on the treatment of pain using novel devices, as well as brain imaging studies, data analysis, and machine learning to elucidate the working mechanism of the treatments and the condition itself. You will also conduct studies to further improve and develop devices and treatments, with the ultimate goal of relieving people from their chronic and debilitating pain. Information about the department and the research Our group developed a novel treatment for phantom limb pain (PLP) using myoelectric pattern recognition (machine learning) for the decoding of motor volition, and virtual and augmented reality for real-time biofeedback. This treatment is now used worldwide. However, the mechanism underlying PLP is still unknown. This position is related to the translational research involving clinical, behavioral, and brain imaging studies for better understanding of pain due to sensorimotor impairments and it's treatment. The position is within the Center for Bionics and Pain Research (CBPR), a multidisciplinary engineering and medical collaboration between Chalmers University of Technology, Sahlgrenska University Hospital, and the Sahlgrenska Academy at the University of Gothenburg. The mission of CBPR is to develop and clinically implement technologies to eliminate disability and pain due to sensorimotor impairment. The person will be officially employed at the Department of Electrical Engineering at Chalmers, where we conduct internationally renowned research in biomedical engineering, antenna systems, signal processing, image analysis, automatic control, automation, mechatronics, and communication systems. Major responsibilities Your main responsibilites will include: - Design and implementation of clinical trials. - Design and conduct behavioral and brain imagining studies. - Literature reviews on treatments and epidemiology of pain. Contract terms Full-time temporary employment. The position is limited to a maximum of three years (two years initially with a possible extension to three years). We offer Chalmers offers a cultivating and inspiring working environment in the coastal city of Gothenburg. Read more about working at Chalmers and our benefits for employees at https://www.chalmers.se/en/about-chalmers/Working-at-Chalmers/Pages/default.aspx CBPR is located within Sahlgrenska University Hospital in Mölndal, and you can read more about our work and our team at https://cbpr.se/ Chalmers aims to actively improve our gender balance. We work broadly with equality projects, for example the GENIE Initiative on gender equality for excellence. Equality and diversity are substantial foundations in all activities at Chalmers. Application procedure The application should be marked with Ref 20220311 and written in English. The application should be sent electronically and be attached as PDF-files, as below. Maximum size for each file is 40 MB. Please note that the system does not support Zip files. CV: (Please name the document as: CV, Surname, Ref. number) including: • CV, include complete list of publications • Two references that we can contact. Personal letter: (Please name the document as: Personal letter, Family name, Ref. number) 1-3 pages where you: • Introduce yourself • Describe your previous research fields and main research results • Describe how you can contribute to CBPR's research program. Other documents: • Attested copies of completed education, grades and other certificates. <b>How to apply</b> https://www.chalmers.se/en/about-chalmers/Working-at-Chalmers/Vacancies/Pages/default.aspx?rmpage=job&rmjob=10630&rmlang=UK Use the button at the foot of the page to reach the application form. For questions, please contact: Prof. Max Ortiz Catalan, Systems and Control maxo@chalmers, +46 708461065

Position

Dr. Yasmine El-Shamayleh

Professor
New York, NY
Dec 5, 2025

Columbia University’s Mortimer B. Zuckerman Mind Brain Behavior Institute (the Zuckerman Institute) brings together world-class researchers from varied scientific disciplines to explore aspects of mind and brain, through the exchange of ideas and active collaboration. The Zuckerman Institute’s home, the Jerome L. Greene Science Center is a state-of-the-art facility on Columbia’s Manhattanville campus. Situated in the heart of Manhattan in New York City, the Zuckerman Institute houses over 50 laboratories employing a broad range of interdisciplinary approaches to transform our understanding of the mind and brain. In this highly collaborative environment, experimental, computational, and theoretical labs work together to gain critical insights into how the brain develops, performs, endures and recovers. The El-Shamayleh lab within the Zuckerman Institute is seeking a Staff Associate I to study the neural basis of vision. The Staff Associate I will assist in conducting behavioral and neurophysiological studies in large research mammals in a scientific wet-lab environment. The Staff Associate I will be responsible for the following: • Will assist in conducting wet-lab mammal training and the collection of behavioral and neural data. • Will assist in conducting behavioral and neurophysiological studies in research mammals. • Will assist the Principal Investigator in basic surgical procedures, in the daily care of large research mammals, experimental setup and will maintain lab supplies and reagents. Minimum Qualifications Bachelor’s degree in Neuroscience or Biological Sciences, required. At least one year of previous experience working in a wet lab; experience working with large mammals is highly desirable, as is knowledge of visual neuroscience and experience in performing basic surgical techniques. Qualified candidates must be capable of working independently on husbandry and training duties once instructed. Inquiries about this role should be directed to yasmine.shamayleh@columbia.edu and applications can be submitted to https://apply.interfolio.com/105441.

Position

Dr. Stavros Lomvardas

Professor
New York, NY
Dec 5, 2025

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute (the Zuckerman Institute) brings together researchers to explore aspects of mind and brain, through the exchange of ideas and active collaboration. The Zuckerman Institute's home is the Jerome L. Greene Science Center on Columbia's Manhattanville campus. Situated in the heart of Manhattan, at full capacity the Zuckerman Institute will house over 50 laboratories employing a broad range of interdisciplinary approaches to transform our understanding of the mind and brain. In this highly collaborative environment, labs work together to gain critical insights into human health by exploring how the brain develops, performs, endures and recovers from trauma or disease. In collaboration with the Ruta Lab at the Rockefeller University, the Lomvardas Lab at the Zuckerman Institute is seeking a jointly appointed Postdoctoral Research Scientist who will tackle exciting questions exploring the structure and function of sensory receptors. Experience with biochemistry, membrane protein structure determination methods and biophysics is preferred. This position offers great salary and benefits, access to state of the art facilities at both universities and the opportunity to benefit from the collaborative cultures of two labs with complementary expertise. Direct inquiries, CVs and research statements from interested candidates should be sent to Dr. Stavros Lomvardas (sl682@cumc.columbia.edu) and Dr. Vanessa Ruta (ruta@rockefeller.edu). More information can also be found at the Lomvardas Lab and Ruta Lab websites: https://lomvardaslab.zuckermaninstitute.columbia.edu/ https://www.rockefeller.edu/our-scientists/heads-of-laboratories/989-vanessa-ruta/ Columbia University is an Equal Opportunity Employer/Disability/Veteran and is committed to the hiring of qualified local residents. Columbia University welcomes and strongly encourages applicants from underrepresented minorities in STEM (Blacks or African Americans, Hispanics or Latinos, Native Americans or Alaska Natives, Native Hawaiians and other Pacific Islanders), individuals from disadvantaged backgrounds, veterans, individuals with disabilities and women (particularly from the above categories).

Position

Arcadia Science

Arcadia Science
Berkeley, California, US
Dec 5, 2025

A Bit About Us: We are Arcadia Science. Arcadia is a well-funded for-profit biology research and development company founded and led by scientists. Our mission is to give a community of researchers the freedom and tools to be adventurous, to discover, and to make scientific exploration financially self-sustaining in the life sciences. We are inspired by the spirit of exploration and aspire to evolve how science is done, who it attracts and rewards, and what it can achieve. Research @ Arcadia: At Arcadia, we are building an intramural research and development program that will encompass three areas: (1) emerging organismal biology, (2) enabling research technologies, and (3) translational development. Research areas will be carried out by independent scientists and those working together towards shared goals. Projects will be collaborative in nature and pursue science that is more high-risk and exploratory than typical life science research programs. We will invest heavily in creative technologies that can invent new research tools or optimize workflows for emerging organismal systems. In addition to conducting research, Arcadia scientists will drive engagement with the broader scientific community in order to maximize the impact of our work and identify research areas and needs that Arcadia may be uniquely positioned to address.

PositionNeuroscience

Prof Thackery Brown

Georgia Institute of Technology
Atlanta, GA, US
Dec 5, 2025

The Georgia Institute of Technology is one of the top ranked institutions in the country and ranks as one of the best places to work. The School of Psychology and Undergraduate Program in Neuroscience in the College of Sciences invites applications for a full-time, non-tenure-track Academic Professional faculty position, which is a Teaching Faculty and Academic Advisor position, beginning July 1st 2022 (earlier start possible). The successful candidate will join a vibrant group of faculty with interests in brain, cognition, behavior and (neuro)technology as well as innovative pedagogy and research in those fields. The Academic Professional faculty member will be primarily responsible for teaching courses in the undergraduate neuroscience curriculum. Additional duties include academic advising, course development, and program assessment. The position provides opportunities for program and professional development, as well as for promotion through the non-tenured faculty track. Preference will be given to applicants who are well prepared to teach neuroscience and who have strong background in quantitative and computational methods. The applicant must have a PhD in neuroscience, psychology or a related discipline and experience with teaching undergraduate neuroscience and/or psychology-related coursework. Applicants should provide a letter of intent, curriculum vita, teaching statement, and the names and contact information for two references. Applications can be submitted electronically in PDF format to (applicant portal). Review of applications will begin immediately and will continue until the position is filled. Georgia Tech is a top-ranked public research university situated in the heart of Atlanta, a diverse and vibrant city with great economic and cultural strengths. The Institute is a member of the University System of Georgia, the Georgia Research Alliance, and the Association of American Universities. Georgia Tech prides itself on its technology resources, collaborations, high-quality student body, and its commitment to diversity, equity, and inclusion. Georgia Tech is an equal education/employment opportunity institution dedicated to building a diverse community. We strongly encourage applications from women, underrepresented minorities, individuals with disabilities, and veterans. Georgia Tech has policies to promote a healthy work-life balance and is aware that attracting faculty may require meeting the needs of two careers.

PositionNeuroscience

Prof Thackery Brown

Georgia Institute of Technology
Atlanta, United States
Dec 5, 2025

The Georgia Institute of Technology is one of the top ranked institutions in the country and ranks as one of the best places to work. The School of Psychology and Undergraduate Program in Neuroscience in the College of Sciences invites applications for a full-time, non-tenure-track Academic Professional faculty position, which is a Teaching Faculty and Academic Advisor position, beginning July 1st 2022 (earlier start possible). The successful candidate will join a vibrant group of faculty with interests in brain, cognition, behavior and (neuro)technology as well as innovative pedagogy and research in those fields. The Academic Professional faculty member will be primarily responsible for teaching courses in the undergraduate neuroscience curriculum. Additional duties include academic advising, course development, and program assessment. The position provides opportunities for program and professional development, as well as for promotion through the non-tenured faculty track. Preference will be given to applicants who are well prepared to teach neuroscience and who have strong background in quantitative and computational methods. The applicant must have a PhD in neuroscience, psychology or a related discipline and experience with teaching undergraduate neuroscience and/or psychology-related coursework. Applicants should provide a letter of intent, curriculum vita, teaching statement, and the names and contact information for two references. Applications can be submitted electronically in PDF format to (applicant portal). Review of applications will begin immediately and will continue until the position is filled. Georgia Tech is a top-ranked public research university situated in the heart of Atlanta, a diverse and vibrant city with great economic and cultural strengths. The Institute is a member of the University System of Georgia, the Georgia Research Alliance, and the Association of American Universities. Georgia Tech prides itself on its technology resources, collaborations, high-quality student body, and its commitment to diversity, equity, and inclusion. Georgia Tech is an equal education/employment opportunity institution dedicated to building a diverse community. We strongly encourage applications from women, underrepresented minorities, individuals with disabilities, and veterans. Georgia Tech has policies to promote a healthy work-life balance and is aware that attracting faculty may require meeting the needs of two careers.

Position

Dr. Sonja Vernes

St. Andrews University
St.Andrews, UK
Dec 5, 2025

A PhD student is sought to investigate the molecular and genetic bases of vocal learning using a range of cutting edge techniques and model systems. The project will ask how this complex behaviour can be encoded at molecular level by investigating genetic mechanisms and genomic factors. The student will receive comprehensive training to use diverse approaches including molecular, cellular and functional assays, design and testing of genetic engineering methods (CRISPR, shRNA etc), viral packaging, transcriptomics, proteomics and in silico genomic approaches. The student will have the opportunity to work with our extraordinary model system – bats. We have been pioneering the study of bats as neurogenetic models and established them to explore the molecular mechanisms underlying vocal learning and to understand the biology and evolution of speech and language. We have recently generated the first successful genetically engineered bats (transient transgenics) and the student will apply the methods developed in the group, as well as develop new transgenic bat models as part of their project. Working with live animals is not a requirement, as the project is predominantly molecular lab based, but there will be the opportunity to work with the animals if it is desired by the student. This model will shed light onto the molecular encoding of mammalian vocal learning and represent a sophisticated model to provide insight into the mechanisms underlying childhood disorders of language. We are a highly interdisciplinary and collaborative lab and the PhD student will work closely with highly supportive lab members and our rich network of interdisciplinary collaborators, many of whom are world leaders in the field. The student will also be encouraged to present their findings at international conferences (in person or online) and may visit the lab(s) of international collaborators for research stays and knowledge exchange. The PI leads an international genomics consortium, www.bat1k, that is a vibrant community of more than 350 members across >50 countries, which provides many opportunities for interaction, training, knowledge exchange and future career opportunities. This project will provide an excellent opportunity for a student with a keen interest in molecular biology to train in both established as well as new cutting-edge methods applicable to most model systems. Training and personal development will be a key aspect of the PhD and we will work with the student to develop a training plan that suits their needs and personal goals. This will include training in scientific methods, but also in personal and professional development (eg. project design and management, communication skills, writing skills, etc) and will be bolstered by the excellent training available from the transferable skills programme at the University of St Andrews. Many of our lab members are also involved in outreach initiatives and we support students to become involved in local, national or international initiatives according to their interests. The project will be hosted in the School of Biology at the University of St Andrews and benefit from interactions across its three internationally renowned research centres; The Scottish Oceans Institute (SOI), Biomedical Sciences Research Complex (BSRC) and Centre for Biological Diversity (CBD). The incredibly rich research environment and excellent facilities present in the School have led to the School of Biology continuing to be scored by the National Student Survey as one of the top biology schools in the UK. In the student satisfaction led survey, The Times and Sunday Times Good University Guide 2022, the University of St Andrews was ranked as the top UK university, evidence of the rich student environment and social and collegiate atmosphere that leads to a highly positive experience for students at St Andrews.

Position

Professor Fiona Newell

Institute of Neuroscience, Trinity College Dublin
Dublin, Ireland
Dec 5, 2025

Applications are invited for the role of Post-doctoral Researcher at Trinity College Institute of Neuroscience (TCIN). The aim of the project is to elucidate the behavioural and brain processes underpinning combined visual, auditory and haptic object categorization, in children and in adults, and assess the extent to which such categories adapt to changes in task conditions. The research adopts a multidisciplinary approach involving cognitive neuroscience, statistical modelling, and psychophysics. The candidate will work within the Multisensory Cognition lab, headed by Professor Fiona Newell, and will also work in collaboration with Prof. Robert Whelan and his research team. Both groups are based in TCIN and affiliated with the School of Psychology. The Multisensory Cognition lab has dedicated laboratory facility equipped with state-of art facilities for behavioural testing, including eye tracking and VR technology (HTC Vive and Oculus). TCIN also houses a research-dedicated MRI scanner, accessible to all principal investigators and their groups. The position is funded for 2 years initially, with a possibility for continuation, and is available immediately. Ideally, successful candidates are expected to take up the position no later than March 2022. The post-doctoral researcher will join a research team of PhD students, postdoctoral researchers, and a research assistant/lab manager and have the opportunity to collaborate with colleagues within the Institute of Neuroscience, across other disciplines in Trinity College, and industrial partners. They will participate in regular lab and collaborator meetings, learn about diverse methodologies in perceptual science and have the opportunity to attend major international conferences in the field. Funding Information The position is funded by Science Foundation Ireland, from a Future Frontiers Award to Fiona Newell (Principal Investigator).

Position

Dr Greg Jefferis

University of Cambridge, Department of Zoology
Cambridge, UK
Dec 5, 2025

A Research Assistant post is available in the Drosophila Connectomics Group directed by Greg Jefferis and Matthias Landgraf in the Department of Zoology at the University of Cambridge. Applicants will work with electron-microscopy image data, annotate and proof-read automatically segmented reconstructions of neurons and their connectivity, develop open source tools for data analysis/processing and perform neuron morphology, graph/circuit analyses etc. to obtain biological insight. A background in neurobiology or a strong quantitative preparation (e.g. in bioinformatics/computer science) will be helpful. Successful candidates will join a team based in Zoology with 15 team members, carrying out data processing and computational analysis of neuronal reconstruction data. They will interact closely with a similar team in the US as well as experimental groups in Oxford (Scott Waddell) and Cambridge (Greg Jefferis).

Position

Dr Greg Jefferis

University of Cambridge, Department of Zoology
Cambridge, UK
Dec 5, 2025

A Research Assistant post is available in the Drosophila Connectomics Group directed by Greg Jefferis and Matthias Landgraf in the Department of Zoology at the University of Cambridge. Applicants will work with electron-microscopy image data, annotate and proof-read automatically segmented reconstructions of neurons and their connectivity, develop open source tools for data analysis/processing and perform neuron morphology, graph/circuit analyses etc. to obtain biological insight. A background in neurobiology or a strong quantitative preparation (e.g. in bioinformatics/computer science) will be helpful. Successful candidates will join a team based in Zoology with 15 team members, carrying out data processing and computational analysis of neuronal reconstruction data. They will interact closely with a similar team in the US as well as experimental groups in Oxford (Scott Waddell) and Cambridge (Greg Jefferis). Candidates will report to a team leader based in Zoology and will be mentored by an experienced post-doc. There will be opportunities to contribute to training new team members as the group expands and to general project management, as well as to participate in public engagement activities.

Position

Dr Greg Jefferis

University of Cambridge, Department of Zoology
Cambridge, United Kingdom
Dec 5, 2025

A Research Assistant post is available in the Drosophila Connectomics Group directed by Greg Jefferis and Matthias Landgraf in the Department of Zoology at the University of Cambridge. Applicants will work with electron-microscopy image data, annotate and proof-read automatically segmented reconstructions of neurons and their connectivity, develop open source tools for data analysis/processing and perform neuron morphology, graph/circuit analyses etc. to obtain biological insight. A background in neurobiology or a strong quantitative preparation (e.g. in bioinformatics/computer science) will be helpful. Successful candidates will join a team based in Zoology with 15 team members, carrying out data processing and computational analysis of neuronal reconstruction data. They will interact closely with a similar team in the US as well as experimental groups in Oxford (Scott Waddell) and Cambridge (Greg Jefferis). Candidates will need to be highly motivated and develop a good understanding of the nature of the data and the scientific aims of the project. This will be critical to setting priorities as the project develops. Close teamwork and a collaborative spirit will be essential, but team members will have increasing opportunities for scientific independence as their expertise develops. Candidates will report to a team leader based in Zoology and will be mentored by an experienced post-doc. There will be opportunities to contribute to training new team members as the group expands and to general project management, as well as to participate in public engagement activities. Candidates will report to a team leader based in Zoology and will be mentored by an experienced post-doc. There will be opportunities to contribute to training new team members as the group expands and to general project management, as well as to participate in public engagement activities.

Position

Dr Avgis Hadjipapas

University of Nicosia Medical School
Nicosia, Cyprus
Dec 5, 2025

The PhD in Medical Sciences: The University of Nicosia Medical School offers the degree PhD in Medical Sciences. The degree is awarded to students who successfully complete an independent research programme that breaks new ground in the chosen field of study. The PhD programme aspires to empower students to become independent researchers, thus advancing innovation and development. The Research Project: We are currently inviting application through a competitive process for high calibre candidates to apply for the below PhD Project in the field of Neuroscience. The successful candidate will enrol on the PhD programme in Medical Sciences and will work under the Supervision of Dr Avgis Hadjipapas, Professor of Neuroscience and Research Methods at the University of Nicosia Medical School. The project is based on an international collaboration between the University of Nicosia Medical School, and Maastricht University (MU). Project Description: Title of research project: Laminar interactions and information flow in primary visual cortex. Background, rationale and objectives: Understanding how neuronal networks in the brain communicate in order to perform various computations is a major goal of systems neuroscience today. Networks in the cortex are exquisitely organized in layers and form well defined and repeating microcircuits (Gilbert and Wiesel, 1983). The anatomical connectivity between layers and the single cell behaviour in these layers have been studied in the past leading to important insights into the workings of the cortical circuit (reviewed in (Bastos et al., 2012)). At the same time, it has become clear that neurons engage in synchronous oscillations in the gamma band (20-90Hz). These have been observed in all laminar compartments of the cortex (Maier et al., 2010; Roberts et al., 2013; Xing et al., 2012). How are these oscillations to be reconciled with the laminar structure of the cortical microcircuits? Does the presence of oscillations constrain the way that layers communicate with each other? What is the means of communication between layers in the presence of these oscillations? These are important open questions that this project will help address. The main aim of the project will be to characterize interactions between different laminar compartments, and the observed frequencies of the oscillations expressed in these compartments. This search for interactions is theoretically- motivated; the main argument is that laminar compartments can be viewed as weakly coupled oscillators and therefore powerful concepts of synchronization theory apply. Depending on the relationship between the expressed oscillation frequencies in each compartment and their anatomical coupling, synchronization can be employed to derive theoretical predictions(Hadjipapas et al., 2009; Lowet et al., 2017, 2015). Among other possibilities, it is possible that directed interactions between laminar compartments may ensue, resulting in a directed flow of information across the cortical circuit (Ferro et al., 2021; van Kerkoerle et al., 2014). In directed interactions, frequency differences between laminar compartments are important because these, shape the ensuing synchronization process (Hadjipapas et al., 2009; Lowet et al., 2017, 2015). Directed interactions may be important to prioritize feedforward (bottom-up) influences from feedback influences (top down) when these are required by the stimulus or task at hand. In this project interactions across laminar compartments will be characterized and the information flow between compartments will be examined as a function of stimulus luminance contrast (bottom up input) and attention (top down input). This will be pursued in already existing data acquired by laminar probes in the awake behaving monkey, provided by the Maastricht collaboration. This data allows for the characterization of oscillations across laminar compartments. A computational neuronal model for communication between the layers will also be produced , which will be constrained by the data similar to the approach taken in (Zachariou et al., 2021). This model will aid data interpretations and produce further testable predictions. In sum, this project aims to help reconcile oscillatory activity with appropriate/adaptive information flow in the cortical circuit by producing a framework for studying the interactions within the fundamental cortical circuit including a computational model. Successful candidates will further benefit from interacting with an international consortium of neuroscientists throughout the duration of the project. References Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. Canonical Microcircuits for Predictive Coding. Neuron 76, 695–711. https://doi.org/10.1016/j.neuron.2012.10.038 Ferro, D., Kempen, J. van, Boyd, M., Panzeri, S., Thiele, A., 2021. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc. Natl. Acad. Sci. 118. https://doi.org/10.1073/PNAS.2022097118 Gilbert, C.D., Wiesel, T.N., 1983. Functional Organization of the Visual Cortex. Prog. Brain Res. 58, 209–218. https://doi.org/10.1016/S0079-6123(08)60022-9 Hadjipapas, A, Casagrande, E., Nevado, A., Barnes, G.R., Green, G., Holliday, I.E., 2009. Can we observe collective neuronal activity from macroscopic aggregate signals? Neuroimage 44, 1290–1303. Lowet, E., Roberts, M., Hadjipapas, A., Peter, A., van der Eerden, J., De Weerd, P., 2015. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding. PLOS Comput. Biol. 11, e1004072. https://doi.org/10.1371/journal.pcbi.1004072 Lowet, E., Roberts, M.J., Peter, A., Gips, B., Weerd, P. De, 2017. A quantitative theory of gamma synchronization in macaque V1 1–44. Maier, A., Adams, G.K., Aura, C., Leopold, D. a, 2010. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front. Syst. Neurosci. 4, 1–11. https://doi.org/10.3389/fnsys.2010.00031 Roberts, M.J., Lowet, E., Brunet, N.M., Ter Wal, M., Tiesinga, P., Fries, P., De Weerd, P., 2013. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78, 523–36. https://doi.org/10.1016/j.neuron.2013.03.003 van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., van der Togt, C., Roelfsema, P.R., 2014. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A 111, 14332–14341. https://doi.org/10.1073/pnas.1402773111 Xing, D., Yeh, C.-I., Burns, S., Shapley, R.M., 2012. Laminar analysis of visually evoked activity in the primary visual cortex. Proc. Natl. Acad. Sci. U. S. A. 109, 13871–6. https://doi.org/10.1073/pnas.1201478109 Zachariou, M., Roberts, M., Lowet, E., De Weerd, P., Hadjipapas, A., 2021. Empirically constrained network models for contrast-dependent modulation of gamma rhythm in V1. Neuroimage 229, 117748. https://doi.org/10.1016/j.neuroimage.2021.117748 Tuition Fees: The tuition fees are €13,500 in total for the first 3 years. For each additional academic year, tuition is €1,500 per year. Application for the PhD Research Project: Candidates should submit an online application through this link (https://bit.ly/2Zet5QZ) and upload the following supporting documents: • A cover letter clearly stating that they apply for the PhD Research Project in the field of Neuroscience ‘Laminar interactions and information flow in primary visual cortex.’ • Copies of the applicant’s qualifications/degree(s) – the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Copies of the applicant’s transcript(s) - the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Proof of English language proficiency: the candidate should either complete previous degree(s) in an English-speaking country or should have passed IELTS (score of 7 overall, with a minimum score of 7 in writing) or should have achieved an equivalent score in an internationally recognized English language qualification. • Two reference letters, of which at least one should be from an academic. • A full Curriculum Vitae (CV).

Position

SISSA cognitive neuroscience PhD

International School for Advanced Studies (SISSA)
Trieste
Dec 5, 2025

Up to 2 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2024. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience group (https://phdcns.sissa.it/) hosts 6 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language, tactile perception and learning, and neural computation. Our research is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. The selection procedure is now open. The application deadline is 27 August 2024. Please apply here (https://www.sissa.it/bandi/ammissione-ai-corsi-di-philosophiae-doctor-posizioni-cofinanziate-dal-fondo-sociale-europeo), and see the admission procedure page (https://phdcns.sissa.it/admission-procedure) for more information. Note that the positions available for the Fall admission round are those funded by the "Fondo Sociale Europeo Plus", accessible through the first link above. Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

SeminarNeuroscience

High Stakes in the Adolescent Brain: Glia Ignite Under THC’s Influence

Yalin Sun
University of Toronto
Dec 3, 2025
SeminarNeuroscience

Convergent large-scale network and local vulnerabilities underlie brain atrophy across Parkinson’s disease stages

Andrew Vo
Montreal Neurological Institute, McGill University
Nov 5, 2025
SeminarNeuroscience

The tubulin code in neuron health and disease : focus on detyrosination

Marie-Jo Moutin
Grenoble Institute Neurosciences, Univ Grenoble Alpes, Inserm U1216, CNRS
Oct 9, 2025
SeminarNeuroscience

AutoMIND: Deep inverse models for revealing neural circuit invariances

Richard Gao
Goethe University
Oct 1, 2025
SeminarNeuroscience

Endocannabinoid System Dysregulations in Binge Eating Disorder and Obesity

Katia Befort
CNRS University of Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives
Sep 30, 2025
SeminarNeuroscienceRecording

Go with the visual flow: circuit mechanisms for gaze control during locomotion

Eugenia Chiappe
Champalimaud Foundation
Sep 11, 2025
SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Jul 31, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 8, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarPsychology

Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives

Lukasz Piwek
University of Bath & Cumulus Neuroscience Ltd
Jul 6, 2025

Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.

SeminarNeuroscience

“Brain theory, what is it or what should it be?”

Prof. Guenther Palm
University of Ulm
Jun 26, 2025

n the neurosciences the need for some 'overarching' theory is sometimes expressed, but it is not always obvious what is meant by this. One can perhaps agree that in modern science observation and experimentation is normally complemented by 'theory', i.e. the development of theoretical concepts that help guiding and evaluating experiments and measurements. A deeper discussion of 'brain theory' will require the clarification of some further distictions, in particular: theory vs. model and brain research (and its theory) vs. neuroscience. Other questions are: Does a theory require mathematics? Or even differential equations? Today it is often taken for granted that the whole universe including everything in it, for example humans, animals, and plants, can be adequately treated by physics and therefore theoretical physics is the overarching theory. Even if this is the case, it has turned out that in some particular parts of physics (the historical example is thermodynamics) it may be useful to simplify the theory by introducing additional theoretical concepts that can in principle be 'reduced' to more complex descriptions on the 'microscopic' level of basic physical particals and forces. In this sense, brain theory may be regarded as part of theoretical neuroscience, which is inside biophysics and therefore inside physics, or theoretical physics. Still, in neuroscience and brain research, additional concepts are typically used to describe results and help guiding experimentation that are 'outside' physics, beginning with neurons and synapses, names of brain parts and areas, up to concepts like 'learning', 'motivation', 'attention'. Certainly, we do not yet have one theory that includes all these concepts. So 'brain theory' is still in a 'pre-newtonian' state. However, it may still be useful to understand in general the relations between a larger theory and its 'parts', or between microscopic and macroscopic theories, or between theories at different 'levels' of description. This is what I plan to do.

SeminarNeuroscienceRecording

Seeing a changing world through the eyes of coral fishes

Fabio Cortesi
Queensland University
Jun 25, 2025
SeminarNeuroscience

Neural control of internal affective states”

David J. Anderson
California Institute of Technology, Tianqiao and Chrissy Chen Institute for Neuroscience, California, USA
Jun 18, 2025
SeminarNeuroscience

Astrocytes release glutamate by regulated exocytosis in health and disease

Vladimir Parpura
Distinguished Professor Zhejiang Chinese Medical University and Director of the International Translational Neuroscience Research Institute, Hangzhou, P.R. China
Jun 4, 2025

Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 13, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarPsychology

Using Fast Periodic Visual Stimulation to measure cognitive function in dementia

George Stothart
University of Bath & Cumulus Neuroscience Ltd
May 13, 2025

Fast periodic visual stimulation (FPVS) has emerged as a promising tool for assessing cognitive function in individuals with dementia. This technique leverages electroencephalography (EEG) to measure brain responses to rapidly presented visual stimuli, offering a non-invasive and objective method for evaluating a range of cognitive functions. Unlike traditional cognitive assessments, FPVS does not rely on behavioural responses, making it particularly suitable for individuals with cognitive impairment. In this talk I will highlight a series of studies that have demonstrated its ability to detect subtle deficits in recognition memory, visual processing and attention in dementia patients using EEG in the lab, at home and in clinic. The method is quick, cost-effective, and scalable, utilizing widely available EEG technology. FPVS holds significant potential as a functional biomarker for early diagnosis and monitoring of dementia, paving the way for timely interventions and improved patient outcomes.

SeminarNeuroscience

Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury

Franco Pestilli
University of Texas, Austin, USA
May 12, 2025

Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..

SeminarNeuroscience

Rejuvenating the Alzheimer’s brain: Challenges & Opportunities

Salta Evgenia
Netherlands Institute for Neuroscience, Royal Dutch Academy of Science
May 8, 2025
SeminarNeuroscience

Simulating Thought Disorder: Fine-Tuning Llama-2 for Synthetic Speech in Schizophrenia

Alban Elias Voppel
McGill University
Apr 30, 2025
SeminarNeuroscienceRecording

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala

Kenneth Hayworth
Carboncopies Foundation & BPF Aspirational Neuroscience
Apr 21, 2025

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.

SeminarNeuroscienceRecording

Memory Decoding Journal Club: Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Apr 7, 2025

Join us for the Memory Decoding Journal Club, a collaboration between the Carboncopies Foundation and BPF Aspirational Neuroscience. This month, we're diving into a groundbreaking paper: 'Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating' by Bo Lei, Bilin Kang, Yuejun Hao, Haoyu Yang, Zihan Zhong, Zihan Zhai, and Yi Zhong from Tsinghua University, Beijing Academy of Artificial Intelligence, IDG/McGovern Institute of Brain Research, and Peking Union Medical College. Dr. Randal Koene will guide us through an engaging discussion on these exciting findings and their implications for neuroscience and memory research.

Conference

COSYNE 2025

Montreal, Canada
Mar 27, 2025

The COSYNE 2025 conference was held in Montreal with post-conference workshops in Mont-Tremblant, continuing to provide a premier forum for computational and systems neuroscience. Attendees exchanged cutting-edge research in a single-track main meeting and in-depth specialized workshops, reflecting Cosyne’s mission to understand how neural systems function:contentReference[oaicite:6]{index=6}:contentReference[oaicite:7]{index=7}.

SeminarNeuroscience

Pain in the Brain: A Drink a Day Could Bring More Than You Bargain

Michael Burton
Department of Neuroscience, The University of Texas at Dallas
Mar 17, 2025
SeminarNeuroscience

What it’s like is all there is: The value of Consciousness

Axel Cleeremans
Université Libre de Bruxelles
Mar 6, 2025

Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.

SeminarNeuroscienceRecording

Brain Emulation Challenge Workshop

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Feb 21, 2025

Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.

SeminarNeuroscienceRecording

Brain Emulation Challenge Workshop

Konrad Kording
Professor,University of Pennsylvania, Department of Neuroscience and Department of Bioengineering
Feb 21, 2025

Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.

SeminarNeuroscience

Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors

Prof. Dr. Ziad M. Hafed
Werner Reichardt Center for Integrative Neuroscience, and Hertie Institute for Clinical Brain Research University of Tübingen
Feb 11, 2025

The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.

SeminarNeuroscience

Predicting traveling waves: a new mathematical technique to link the structure of a network to the specific patterns of neural activity

Roberto Budzinski
Western University
Feb 5, 2025
SeminarNeuroscience

Mapping the neural dynamics of dominance and defeat

Annegret Falkner
Princeton Neuroscience Institute, USA
Dec 11, 2024

Social experiences can have lasting changes on behavior and affective state. In particular, repeated wins and losses during fighting can facilitate and suppress future aggressive behavior, leading to persistent high aggression or low aggression states. We use a combination of techniques for multi-region neural recording, perturbation, behavioral analysis, and modeling to understand how nodes in the brain’s subcortical “social decision-making network” encode and transform aggressive motivation into action, and how these circuits change following social experience.

SeminarOpen SourceRecording

Towards open meta-research in neuroimaging

Kendra Oudyk
ORIGAMI - Neural data science - https://neurodatascience.github.io/
Dec 8, 2024

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this talk, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them. Check out our tools at https://litmining.github.io/

SeminarNeuroscience

The circuitry behind innate visual behavior

Alexander Heimel
Netherlands Institute for Neuroscience
Dec 1, 2024
SeminarNeuroscience

The Brain Prize winners' webinar

Larry Abbott, Haim Sompolinsky, Terry Sejnowski
Columbia University; Harvard University / Hebrew University; Salk Institute
Nov 29, 2024

This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.

SeminarNeuroscience

LLMs and Human Language Processing

Maryia Toneva, Ariel Goldstein, Jean-Remi King
Max Planck Institute of Software Systems; Hebrew University; École Normale Supérieure
Nov 28, 2024

This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.

SeminarNeuroscience

Introducing the 'Cognitive Neuroscience & Neurotechnolog' group: From real-time fMRI to layer-fMRI & back

Romy Lorenz
Max Planck Institute for Biological Cybernetics, Tübingen
Nov 27, 2024
SeminarNeuroscience

Contribution of computational models of reinforcement learning to neurosciences/ computational modeling, reward, learning, decision-making, conditioning, navigation, dopamine, basal ganglia, prefrontal cortex, hippocampus

Khamasi Mehdi
Centre National de la Recherche Scientifique / Sorbonne University
Nov 7, 2024
SeminarNeuroscience

Use case determines the validity of neural systems comparisons

Erin Grant
Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre at University College London
Oct 15, 2024

Deep learning provides new data-driven tools to relate neural activity to perception and cognition, aiding scientists in developing theories of neural computation that increasingly resemble biological systems both at the level of behavior and of neural activity. But what in a deep neural network should correspond to what in a biological system? This question is addressed implicitly in the use of comparison measures that relate specific neural or behavioral dimensions via a particular functional form. However, distinct comparison methodologies can give conflicting results in recovering even a known ground-truth model in an idealized setting, leaving open the question of what to conclude from the outcome of a systems comparison using any given methodology. Here, we develop a framework to make explicit and quantitative the effect of both hypothesis-driven aspects—such as details of the architecture of a deep neural network—as well as methodological choices in a systems comparison setting. We demonstrate via the learning dynamics of deep neural networks that, while the role of the comparison methodology is often de-emphasized relative to hypothesis-driven aspects, this choice can impact and even invert the conclusions to be drawn from a comparison between neural systems. We provide evidence that the right way to adjudicate a comparison depends on the use case—the scientific hypothesis under investigation—which could range from identifying single-neuron or circuit-level correspondences to capturing generalizability to new stimulus properties

SeminarNeuroscience

Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data

Hamid Karimi-Rouzbahani
The University of Queensland
Oct 10, 2024

There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.

Conference

Bernstein Conference 2024

Goethe University, Frankfurt, Germany
Sep 29, 2024

Each year the Bernstein Network invites the international computational neuroscience community to the annual Bernstein Conference for intensive scientific exchange:contentReference[oaicite:8]{index=8}. Bernstein Conference 2024, held in Frankfurt am Main, featured discussions, keynote lectures, and poster sessions, and has established itself as one of the most renowned conferences worldwide in this field:contentReference[oaicite:9]{index=9}:contentReference[oaicite:10]{index=10}.

SeminarNeuroscienceRecording

Prosocial Learning and Motivation across the Lifespan

Patricia Lockwood
University of Birmingham, UK
Sep 9, 2024

2024 BACN Early-Career Prize Lecture Many of our decisions affect other people. Our choices can decelerate climate change, stop the spread of infectious diseases, and directly help or harm others. Prosocial behaviours – decisions that help others – could contribute to reducing the impact of these challenges, yet their computational and neural mechanisms remain poorly understood. I will present recent work that examines prosocial motivation, how willing we are to incur costs to help others, prosocial learning, how we learn from the outcomes of our choices when they affect other people, and prosocial preferences, our self-reports of helping others. Throughout the talk, I will outline the possible computational and neural bases of these behaviours, and how they may differ from young adulthood to old age.

SeminarNeuroscience

Development of a small molecule to promote neuroprotection and repair in progressive multiple sclerosis

Petratos Steven
Department of Neuroscience / School of Translational Medicine Monash University, Australia
Jul 7, 2024
SeminarNeuroscience

Marsupial joeys illuminate the onset of neural activity patterns in the developing neocortex

Rodrigo Suarez
University of Queensland in Australia
Jul 1, 2024
SeminarNeuroscience

How can marsupials help us to understand neocortical evolution and plasticity?

Laura Fenlon
University of Queensland in Australia
Jun 30, 2024
Conference

FENS Forum 2024

Messe Wien Exhibition & Congress Center, Vienna, Austria
Jun 25, 2024

Organised by FENS in partnership with the Austrian Neuroscience Association and the Hungarian Neuroscience Society, the FENS Forum 2024 will take place on 25–29 June 2024 in Vienna, Austria:contentReference[oaicite:0]{index=0}. The FENS Forum is Europe’s largest neuroscience congress, covering all areas of neuroscience from basic to translational research:contentReference[oaicite:1]{index=1}.

SeminarNeuroscienceRecording

Retinal Photoreceptor Diversity Across Mammals

Leo Peichl
Goethe University Frankfurt
Jun 2, 2024
SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 15, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarNeuroscience

Modelling the fruit fly brain and body

Srinivas Turaga
HHMI | Janelia
May 14, 2024

Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.

SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 14, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscience

Update on vestibular, ocular motor and cerebellar disorders

Michael Strupp
Munich Center for Neurosciences, Ludwig Maximilians University, Germany
Apr 17, 2024
SeminarNeuroscienceRecording

Cell-type-specific plasticity shapes neocortical dynamics for motor learning

Shouvik Majumder
Max Planck Florida Institute of Neuroscience, USA
Apr 17, 2024

How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.

SeminarNeuroscience

The quest for brain identification

Enrico Amico
Aston University
Mar 20, 2024

In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.

SeminarNeuroscienceRecording

Molecular Characterization of Retinal Cell Types: Insights into Evolutionary Origins and Regional Specializations

Yirong Peng
UCLA Stein Eye Institute
Mar 3, 2024
SeminarNeuroscience

Dyslexia, Rhythm, Language and the Developing Brain

Usha Goswami CBE
University of Cambridge
Feb 21, 2024

Recent insights from auditory neuroscience provide a new perspective on how the brain encodes speech. Using these recent insights, I will provide an overview of key factors underpinning individual differences in children’s development of language and phonology, providing a context for exploring atypical reading development (dyslexia). Children with dyslexia are relatively insensitive to acoustic cues related to speech rhythm patterns. This lack of rhythmic sensitivity is related to the atypical neural encoding of rhythm patterns in speech by the brain. I will describe our recent data from infants as well as children, demonstrating developmental continuity in the key neural variables.

SeminarPsychology

Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry

Mirta Stantic
Royal Holloway, University of London
Feb 18, 2024

In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.

SeminarNeuroscienceRecording

Reimagining the neuron as a controller: A novel model for Neuroscience and AI

Dmitri 'Mitya' Chklovskii
Flatiron Institute, Center for Computational Neuroscience
Feb 4, 2024

We build upon and expand the efficient coding and predictive information models of neurons, presenting a novel perspective that neurons not only predict but also actively influence their future inputs through their outputs. We introduce the concept of neurons as feedback controllers of their environments, a role traditionally considered computationally demanding, particularly when the dynamical system characterizing the environment is unknown. By harnessing a novel data-driven control framework, we illustrate the feasibility of biological neurons functioning as effective feedback controllers. This innovative approach enables us to coherently explain various experimental findings that previously seemed unrelated. Our research has profound implications, potentially revolutionizing the modeling of neuronal circuits and paving the way for the creation of alternative, biologically inspired artificial neural networks.

SeminarNeuroscience

Sommeil et Rêves

Francesca Siclari
Netherlands Institute for Neurosciences
Jan 31, 2024
SeminarNeuroscience

Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions

Marija Markicevic
Yale
Jan 17, 2024

Understanding how macroscale brain dynamics are shaped by microscale mechanisms is crucial in neuroscience. We investigate this relationship in animal models by directly manipulating cellular properties and measuring whole-brain responses using resting-state fMRI. Specifically, we explore the impact of chemogenetically neuromodulating D1 medium spiny neurons in the dorsomedial caudate putamen (CPdm) on BOLD dynamics within a striato-thalamo-cortical circuit in mice. Our findings indicate that CPdm neuromodulation alters BOLD dynamics in thalamic subregions projecting to the dorsomedial striatum, influencing both local and inter-regional connectivity in cortical areas. This study contributes to understanding structure–function relationships in shaping inter-regional communication between subcortical and cortical levels.

SeminarNeuroscienceRecording

Tracking subjects' strategies in behavioural choice experiments at trial resolution

Mark Humphries
University of Nottingham
Dec 6, 2023

Psychology and neuroscience are increasingly looking to fine-grained analyses of decision-making behaviour, seeking to characterise not just the variation between subjects but also a subject's variability across time. When analysing the behaviour of each subject in a choice task, we ideally want to know not only when the subject has learnt the correct choice rule but also what the subject tried while learning. I introduce a simple but effective Bayesian approach to inferring the probability of different choice strategies at trial resolution. This can be used both for inferring when subjects learn, by tracking the probability of the strategy matching the target rule, and for inferring subjects use of exploratory strategies during learning. Applied to data from rodent and human decision tasks, we find learning occurs earlier and more often than estimated using classical approaches. Around both learning and changes in the rewarded rules the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that animals have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.

SeminarNeuroscienceRecording

ALBA webinar series - Breaking down the ivory tower: Ep. 4 Maria José Diógenes

Maria José Diógenes
iMM - ULisboa, PT
Dec 3, 2023

With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 4th episode, Dr. Maria José Diógenes (iMM - ULisboa, PT) will talk about how her personal story changed her professional life: from the pharmacy to the laboratory bench and from ageing to Rett Syndrome.

SeminarNeuroscienceRecording

Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment

Mattia Rosso
Ghent University, IPEM Institute for Systematic Musicology
Nov 28, 2023

Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.

SeminarNeuroscience

Bio-realistic multiscale modeling of cortical circuits

Anton Arkhipov
Allen Institute
Nov 23, 2023

A central question in neuroscience is how the structure of brain circuits determines their activity and function. To explore this systematically, we developed a 230,000-neuron model of mouse primary visual cortex (area V1). The model integrates a broad array of experimental data:Distribution and morpho-electric properties of different neuron types in V1.

Conference

COSYNE 2023

Montreal, Canada
Mar 9, 2023

The COSYNE 2023 conference provided an inclusive forum for exchanging experimental and theoretical approaches to problems in systems neuroscience, continuing the tradition of bringing together the computational neuroscience community:contentReference[oaicite:5]{index=5}. The main meeting was held in Montreal followed by post-conference workshops in Mont-Tremblant, fostering intensive discussions and collaboration.

Conference

Neuromatch 5

Virtual (online)
Sep 27, 2022

Neuromatch 5 (Neuromatch Conference 2022) was a fully virtual conference focused on computational neuroscience broadly construed, including machine learning work with explicit biological links:contentReference[oaicite:11]{index=11}. After four successful Neuromatch conferences, the fifth edition consolidated proven innovations from past events, featuring a series of talks hosted on Crowdcast and flash talk sessions (pre-recorded videos) with dedicated discussion times on Reddit:contentReference[oaicite:12]{index=12}.

Conference

COSYNE 2022

Lisbon, Portugal
Mar 17, 2022

The annual Cosyne meeting provides an inclusive forum for the exchange of empirical and theoretical approaches to problems in systems neuroscience, in order to understand how neural systems function:contentReference[oaicite:2]{index=2}. The main meeting is single-track, with invited talks selected by the Executive Committee and additional talks and posters selected by the Program Committee based on submitted abstracts:contentReference[oaicite:3]{index=3}. The workshops feature in-depth discussion of current topics of interest in a small group setting:contentReference[oaicite:4]{index=4}.

ePoster

Open-source solutions for research data management in neuroscience collaborations

Reema Gupta, Thomas Wachtler

Bernstein Conference 2024

ePoster

Second-order forward-mode optimization of RNNs for neuroscience

Youjing Yu, Rui Xia, Qingxi Ma, Mate Lengyel, Guillaume Hennequin

COSYNE 2025

ePoster

Advanced metamodelling on the o2S2PARC computational neurosciences platform facilitates stimulation selectivity and power efficiency optimization and intelligent control

Werner Van Geit, Cédric Bujard, Mads Rystok Bisgaard, Pedro Crespo-Valero, Esra Neufeld, Niels Kuster

FENS Forum 2024

ePoster

Beyond academic kindness: A multi-stakeholder approach to advance equity, diversity, and inclusion in neuroscience

Karin Grasenick, Željka Krsnik

FENS Forum 2024

ePoster

Effects of alprazolam on anxiety-related behavior in an invertebrate model: Advancing translational neuroscience

Veronica Rivi, Johanna Maria Catharina Blom, Luca Pani, Giulia Puja, Fabio Tascedda, Cristina Benatti

FENS Forum 2024

ePoster

Effects of an online intervention based on pain neuroscience education for pregnant women with lumbar pain on pain, disability, and kinesiophobia: A quasi-experimental pilot study

Celia García Lucas, Lola Serrano Raya, Ana Boldó Roda, Natalia Ibáñez Meca, Luis Suso Martí, Maria Dolores Arguisuelas, Juan José Amer Cuenca, Juan Francisco Lisón, Gemma Biviá Roig

FENS Forum 2024

ePoster

Effects of a prehabilitation programme based on pain neuroscience education in patients scheduled for lumbar radiculopathy surgery

María Dolores Arguisuelas, Miriam Garrigós-Pedrón, Isabel Martínez-Hurtado, Alejandro Álvarez-Llanas, Esteban Tortosa-Sipán, Rafael Llombart-Blanco, Gemma Biviá-Roig, Juan Francisco Lisón, Julio Doménech-Fernández

FENS Forum 2024

ePoster

Empowering collaborative neuroscience: Optimizing FAIR data sharing with a tailored open-source repository for CRC 1280 “Extinction Learning”

Tobias Otto, Marlene Pacharra, Johannes Frenzel, Nina O. C. Winter

FENS Forum 2024

ePoster

The importance of housing conditions in implementing the sex as a biological variable (SABV) policy in neuroscience rodent research

Ivana Jaric, Océane La Loggia, Jovana Malikovic, Marc W Schmid, Janja Novak, Bernhard Voelkl, Irmgard Amrein, Hanno Würbel

FENS Forum 2024

ePoster

Integrating project management principles for efficient neuroscience research

Pranav Joshi, Gargi Ray, Abhipradnya Wahul

FENS Forum 2024

ePoster

"Neuroscience? Isn't that for clever people": Bringing neuroscience to new audiences through public outreach and education

Emma Yhnell

FENS Forum 2024

ePoster

Towards FAIR neuroscience: An efficient workflow for sharing and integrating data

Signy Benediktsdottir, Archana Golla, Camilla H. Blixhavn, Eivind Hennestad, Heidi Kleven, Peyman Najafi, Eszter A. Papp, Sophia Pieschnik, Maja A. Puchades, Ingrid Reiten, Ulrike Schlegel, Oliver Schmid, Lyuba Zehl, Andrew P. Davison, Trygve B. Leergaard, Jan G. Bjaalie

FENS Forum 2024

ePoster

Where personality, memory, and decision-making meet: A cognitive-behavioral neuroscience study

Alejandro Sospedra Orellano, Santiago Canals, Encarni Marcos

FENS Forum 2024

ePoster

Advancing neuroscience education without borders: make your training resources FAIR with INCF!

Malin Sandström

Neuromatch 5

ePoster

Bottom-up approach to preprint peer-review: PCI Neuroscience

Mahesh Karnani

Neuromatch 5

ePoster

Computational Neuroscience in the Arabic region

Alaa Salah

Neuromatch 5

ePoster

Cleo: a simulation testbed for bridging model and experiment in mesoscale neuroscience

Kyle Johnsen

Neuromatch 5

ePoster

Optimization techniques for machine learning based classification involving large-scale neuroscience datasets

Kaustav Mehta

Neuromatch 5

ePoster

Review of applications of graph theory and network neuroscience in the development of artificial neural networks

Jan Bendyk

Neuromatch 5