← Back

Rodent

Topic spotlight
TopicWorld Wide

rodent

Discover seminars, jobs, and research tagged with rodent across World Wide.
101 curated items60 Seminars40 ePosters1 Position
Updated 2 days ago
101 items · rodent
101 results
Position

Prof. Li Zhaoping

University of Tuebingen, and the Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
Germany
Dec 5, 2025

Experiments on Rodent behavior and neural recording motivated by computational considerations, see https://webdav.tuebingen.mpg.de/agzl/data/Postdoc_Neursoscience_July_2020.pdf position open until filled.

SeminarNeuroscience

Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors

Prof. Dr. Ziad M. Hafed
Werner Reichardt Center for Integrative Neuroscience, and Hertie Institute for Clinical Brain Research University of Tübingen
Feb 11, 2025

The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.

SeminarNeuroscience

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Alan Jasanoff
Massachusetts Institute of Technology
Jan 27, 2025

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

SeminarNeuroscience

Mitochondrial diversity in the mouse and human brain

Martin Picard
Columbia University, New York, USA
Apr 16, 2024

The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 27, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscienceRecording

Tracking subjects' strategies in behavioural choice experiments at trial resolution

Mark Humphries
University of Nottingham
Dec 6, 2023

Psychology and neuroscience are increasingly looking to fine-grained analyses of decision-making behaviour, seeking to characterise not just the variation between subjects but also a subject's variability across time. When analysing the behaviour of each subject in a choice task, we ideally want to know not only when the subject has learnt the correct choice rule but also what the subject tried while learning. I introduce a simple but effective Bayesian approach to inferring the probability of different choice strategies at trial resolution. This can be used both for inferring when subjects learn, by tracking the probability of the strategy matching the target rule, and for inferring subjects use of exploratory strategies during learning. Applied to data from rodent and human decision tasks, we find learning occurs earlier and more often than estimated using classical approaches. Around both learning and changes in the rewarded rules the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that animals have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscience

Freeze or flee ? New insights from rodent models of autism

Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Jun 21, 2023

Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.

SeminarNeuroscience

A recurrent network model of planning explains hippocampal replay and human behavior

Guillaume Hennequin
University of Cambridge, UK
May 30, 2023

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as 'rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by - and in turn adaptively affect - prefrontal dynamics.

SeminarNeuroscienceRecording

Targeting Maladaptive Emotional Memories to Treat Mental Health Disorders: Insights from Rodent Models

Amy Milton
Department of Psychology, University of Cambridge
May 8, 2023

Maladaptive emotional memories contribute to the persistence of numerous mental health disorders, including post-traumatic stress disorder (PTSD), drug addiction and obsessive-compulsive disorder (OCD). Using rodent behavioural models of the psychological processes relevant to these disorders, it is possible to identify potential treatment targets for the development of new therapies, including those based upon disrupting the reconsolidation of maladaptive emotional memories. Using examples from rodent models relevant to multiple mental health disorders, this talk will consider some of the opportunities and challenges that this approach provides.

SeminarNeuroscience

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Marija Kundakovic
Fordham University
May 1, 2023

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 14, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscienceRecording

Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging

Dimitri Kullmann
University College London
Jan 17, 2023

Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.

SeminarNeuroscienceRecording

Protocols for the social transfer of pain and analgesia in mice

Monique L. Smith
UCSD
Dec 7, 2022

We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund’s adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. Highlights • A protocol for the rapid social transfer of pain in rodents • Detailed requirements for handling and housing conditions • Procedures for habituation, social interaction, and pain induction and assessment • Adaptable for social transfer of analgesia and may be used to study empathy in rodents https://doi.org/10.1016/j.xpro.2022.101756

SeminarNeuroscience

Epigenome regulation in neocortex expansion and generation of neuronal subtypes

Tran Tuoc, PhD
Ruhruniversität-Bochum, Humangenetik
Aug 23, 2022

Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6

SeminarNeuroscienceRecording

The functional architecture of the human entorhinal-hippocampal circuitry

Xenia Grande
Düzel Lab, University Magdeburg & German Center for Neurodegenerative Diseases
Jul 5, 2022

Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.

SeminarNeuroscience

Ebselen: a lithium-mimetic without lithium side-effects?

Beata R. Godlewska
Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
Jun 30, 2022

Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.

SeminarNeuroscience

Reconstructing inhibitory circuits in a damaged brain

Robert Hunt
University of California-Irvine
May 17, 2022

Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.

SeminarNeuroscience

What does time of day mean for vision?

Annette Allen
University of Manchester (UK)
May 4, 2022

Profound changes in the visual environment occur over the course of the day-night cycle. There is therefore a profound pressure for cells and circuits within the visual system to adjust their function over time, to match the prevailing visual environment. Here, I will discuss electrophysiological data collected from nocturnal and diurnal rodents that reveal how the visual code is ‘temporally optimised’ by 1) the retina’s circadian clock, and 2) a change in behavioural temporal niche.

SeminarNeuroscienceRecording

Mutation targeted gene therapy approaches to alter rod degeneration and retain cones

Maureen McCall
University of Louisville
Mar 27, 2022

My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.

SeminarNeuroscience

Social learning about rewards. How do rodents learn about the world from their peers?

Ewelina Knapska
Nencki Institute, Warsaw, Poland
Feb 27, 2022
SeminarNeuroscienceRecording

NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons

Carmen Canavier
LSU Health Sciences Center, New Orleans
Feb 8, 2022

In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.

SeminarNeuroscienceRecording

A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina

Henrique Von Gersdorff
OHSU
Jan 17, 2022

To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.

SeminarNeuroscience

Neural Codes for Natural Behaviors in Flying Bats

Nachum Ulanovsky
Weizmann Institute
Jan 12, 2022

This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.

SeminarNeuroscienceRecording

NMC4 Short Talk: Novel population of synchronously active pyramidal cells in hippocampal area CA1

Dori Grijseels (they/them)
University of Sussex
Dec 1, 2021

Hippocampal pyramidal cells have been widely studied during locomotion, when theta oscillations are present, and during short wave ripples at rest, when replay takes place. However, we find a subset of pyramidal cells that are preferably active during rest, in the absence of theta oscillations and short wave ripples. We recorded these cells using two-photon imaging in dorsal CA1 of the hippocampus of mice, during a virtual reality object location recognition task. During locomotion, the cells show a similar level of activity as control cells, but their activity increases during rest, when this population of cells shows highly synchronous, oscillatory activity at a low frequency (0.1-0.4 Hz). In addition, during both locomotion and rest these cells show place coding, suggesting they may play a role in maintaining a representation of the current location, even when the animal is not moving. We performed simultaneous electrophysiological and calcium recordings, which showed a higher correlation of activity between the LFO and the hippocampal cells in the 0.1-0.4 Hz low frequency band during rest than during locomotion. However, the relationship between the LFO and calcium signals varied between electrodes, suggesting a localized effect. We used the Allen Brain Observatory Neuropixels Visual Coding dataset to further explore this. These data revealed localised low frequency oscillations in CA1 and DG during rest. Overall, we show a novel population of hippocampal cells, and a novel oscillatory band of activity in hippocampus during rest.

SeminarNeuroscienceRecording

NMC4 Short Talk: Brain-inspired spiking neural network controller for a neurorobotic whisker system

Alberto Antonietti
University of Pavia
Dec 1, 2021

It is common for animals to use self-generated movements to actively sense the surrounding environment. For instance, rodents rhythmically move their whiskers to explore the space close to their body. The mouse whisker system has become a standard model to study active sensing and sensorimotor integration through feedback loops. In this work, we developed a bioinspired spiking neural network model of the sensorimotor peripheral whisker system, modelling trigeminal ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations. This network was embedded in a virtual mouse robot, exploiting the Neurorobotics Platform, a simulation platform offering a virtual environment to develop and test robots driven by brain-inspired controllers. Eventually, the peripheral whisker system was properly connected to an adaptive cerebellar network controller. The whole system was able to drive active whisking with learning capability, matching neural correlates of behaviour experimentally recorded in mice.

SeminarNeuroscience

Wiring & Rewiring: Experience-Dependent Circuit Development and Plasticity in Sensory Cortices

Jennifer Sun
University College London
Nov 21, 2021

To build an appropriate representation of the sensory stimuli around the world, neural circuits are wired according to both intrinsic factors and external sensory stimuli. Moreover, the brain circuits have the capacity to rewire in response to altered environment, both during early development and throughout life. In this talk, I will give an overview about my past research in studying the dynamic processes underlying functional maturation and plasticity in rodent sensory cortices. I will also present data about the current and future research in my lab – that is, the synaptic and circuit mechanisms by which the mature brain circuits employ to regulate the balance between stability and plasticity. By applying chronic 2-photon calcium and close-loop visual exposure, we studied the circuit changes at single-neuron resolution to show that concurrent running with visual stimulus is required to drive neuroplasticity in the adult brain.

SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscienceRecording

Phase precession in the human hippocampus and entorhinal cortex

Salman Qasim
Gu Lab, Icahn School of Medicine at Mount Sinai
Nov 16, 2021

Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our find- ings thus extend theta phase precession to humans and suggest that this phenomenon has a broad func- tional role for the neural representation of both spatial and non-spatial information.

SeminarNeuroscience

Microbiome and behaviour: Exploring underlying mechanisms

Sarah-Jane Leigh
APC Microbiome Ireland
Jul 9, 2021

Environmental insults alter brain function and behaviour inboth rodents and people. One putative underlying mechanism that has receivedsubstantial attention recently is the gut microbiota, the ecosystem ofsymbiotic microorganisms that populate the intestinal tract, which is known toplay a role in brain health and function via the gut-brain axis. Two keyenvironmental insults known to affect both brain function and behaviour, andthe gut microbiome, are poor diet and psychological stress. While there isstrong evidence for interactions between the microbiome and host physiology inthe context of chronic stress, little is known about the role of the microbiomein the host response to acute stress. Determining the underlying mechanisms bywhich stress may provoke functional changes in the gut and brain is criticalfor developing therapeutics to alleviate adverse consequences of traumaticstress.

SeminarNeuroscienceRecording

An in-silico framework to study the cholinergic modulation of the neocortex

Cristina Colangelo
EPFL, Blue Brain Project
Jun 29, 2021

Neuromodulators control information processing in cortical microcircuits by regulating the cellular and synaptic physiology of neurons. Computational models and detailed simulations of neocortical microcircuitry offer a unifying framework to analyze the role of neuromodulators on network activity. In the present study, to get a deeper insight in the organization of the cortical neuropil for modeling purposes, we quantify the fiber length per cortical volume and the density of varicosities for catecholaminergic, serotonergic and cholinergic systems using immunocytochemical staining and stereological techniques. The data obtained are integrated into a biologically detailed digital reconstruction of the rodent neocortex (Markram et al, 2015) in order to model the influence of modulatory systems on the activity of the somatosensory cortex neocortical column. Simulations of ascending modulation of network activity in our model predict the effects of increasing levels of neuromodulators on diverse neuron types and synapses and reveal a spectrum of activity states. Low levels of neuromodulation drive microcircuit activity into slow oscillations and network synchrony, whereas high neuromodulator concentrations govern fast oscillations and network asynchrony. The models and simulations thus provide a unifying in silico framework to study the role of neuromodulators in reconfiguring network activity.

SeminarNeuroscience

Co-tuned, balanced excitation and inhibition in olfactory memory networks

Claire Meissner-Bernard
Friedrich lab, Friedrich Miescher Institute, Basel, Switzerland
May 19, 2021

Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.

SeminarNeuroscience

Memory, learning to learn, and control of cognitive representations

André Fenton
New York University
May 6, 2021

Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.

SeminarNeuroscienceRecording

Memory, learning to learn, and control of cognitive representations

André Fenton
New York University
May 6, 2021

Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.

SeminarNeuroscience

Stress and the Individual: Neurobiological Mechanisms Underlying Differential Susceptibilities and Adaptations

Carmen Sandi
Swiss Federal Institute of Technology, Lausanne
Apr 30, 2021

Dr. Carmen Sandi leads the laboratory of Behavioral Genetis in EPFL, Lausanne. Her lab investigates the impact and mechanism whereby stress and anxiety affect brain and behavior in an integrative program involvong studies in rodents and humans. She is the founder and co-president of Swiss Stress Network, co-director of Swiss National Centre of Competence in Research Synapsy. She is Chair of the ALBA Network, and pas-President of Cajal Advanced Neuroscience Training Program and the Federation of European Neuroscience Societies.

SeminarNeuroscienceRecording

Neural dynamics underlying temporal inference

Devika Narain
Erasmus Medical Centre
Apr 26, 2021

Animals possess the ability to effortlessly and precisely time their actions even though information received from the world is often ambiguous and is inadvertently transformed as it passes through the nervous system. With such uncertainty pervading through our nervous systems, we could expect that much of human and animal behavior relies on inference that incorporates an important additional source of information, prior knowledge of the environment. These concepts have long been studied under the framework of Bayesian inference with substantial corroboration over the last decade that human time perception is consistent with such models. We, however, know little about the neural mechanisms that enable Bayesian signatures to emerge in temporal perception. I will present our work on three facets of this problem, how Bayesian estimates are encoded in neural populations, how these estimates are used to generate time intervals, and how prior knowledge for these tasks is acquired and optimized by neural circuits. We trained monkeys to perform an interval reproduction task and found their behavior to be consistent with Bayesian inference. Using insights from electrophysiology and in silico models, we propose a mechanism by which cortical populations encode Bayesian estimates and utilize them to generate time intervals. Thereafter, I will present a circuit model for how temporal priors can be acquired by cerebellar machinery leading to estimates consistent with Bayesian theory. Based on electrophysiology and anatomy experiments in rodents, I will provide some support for this model. Overall, these findings attempt to bridge insights from normative frameworks of Bayesian inference with potential neural implementations for the acquisition, estimation, and production of timing behaviors.

SeminarNeuroscience

The retrotrapezoid nucleus: an integrative and interoceptive hub in neural control of breathing

Douglas A. Bayliss
University of Virginia
Apr 11, 2021

In this presentation, we will discuss the cellular and molecular properties of the retrotrapezoid nucleus (RTN), an integrative and interoceptive control node for the respiratory motor system. We will present the molecular profiling that has allowed definitive identification of a cluster of tonically active neurons that provide a requisite drive to the respiratory central pattern generator (CPG) and other pre-motor neurons. We will discuss the ionic basis for steady pacemaker-like firing, including by a large subthreshold oscillation; and for neuromodulatory influences on RTN activity, including by arousal state-dependent neurotransmitters and CO2/H+. The CO2/H+-dependent modulation of RTN excitability represents the sensory component of a homeostatic system by which the brain regulates breathing to maintain blood gases and tissue pH; it relies on two intrinsic molecular proton detectors, both a proton-activated G protein-coupled receptor (GPR4) and a proton-inhibited background K+ channel (TASK-2). We will also discuss downstream neurotransmitter signaling to the respiratory CPG, focusing especially on a newly-identified peptidergic modulation of the preBötzinger complex that becomes activated following birth and the initiation of air breathing. Finally, we will suggest how the cellular and molecular properties of RTN neurons identified in rodent models may contribute to understanding human respiratory disorders, such as congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS).

SeminarNeuroscienceRecording

Anterior Cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia

Monique Smith
Malenka lab, Stanford University
Apr 6, 2021

Empathy plays a critical role in social interactions, and many species, including rodents, display evolutionarily conserved behavioral antecedents of empathy. In both humans and rodents, the anterior cingulate cortex (ACC) encodes information about the affective state of others. However, little is known about which downstream targets of the ACC contribute to empathy behaviors. We optimized a protocol for the social transfer of pain behavior in mice and compared the ACC-dependent neural circuitry responsible for this behavior with the neural circuitry required for the social transfer of two related states: analgesia and fear. We found that a 1-hour social interaction between a bystander mouse and a cagemate experiencing inflammatory pain led to congruent mechanical hyperalgesia in the bystander. This social transfer led to activation of neurons in the ACC and several downstream targets, including the nucleus accumbens (NAc), which was revealed by monosynaptic rabies virus tracing to be directly connected to the ACC. Bidirectional manipulation of activity in ACC-to-NAc inputs influenced the acquisition of socially transferred pain. Further, the social transfer of analgesia also depended upon ACC-NAc inputs. By contrast, the social transfer of fear instead required activity in ACC projections to the basolateral amygdala. This shows that mice rapidly adopt the sensory-affective state of a social partner, regardless of the valance of the information (pain, fear, or pain relief). We find that the ACC generates specific and appropriate empathic behavioral responses through distinct downstream targets. More sophisticated understanding of evolutionarily conserved brain mechanisms of empathy will also expedite the development of new therapies for the empathy-related deficits associated with a broad range of neuropsychiatric disorders.

SeminarNeuroscience

Circuit mechanisms for synaptic plasticity in the rodent somatosensory cortex

Anthony Holtmaat
Department of Basic Neurosciences, University of Geneva, CH
Mar 31, 2021

Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons possibly mediated by long-term potentiation (LTP) of synapses. We have previously shown in the mouse somatosensory cortex (S1) that sensory-driven LTP in layer (L) 2/3 pyramidal neurons is dependent on higher order thalamic feedback from the posteromedial nucleus (POm), which is thought to convey contextual information from various cortical regions integrated with sensory input. We have followed up on this work by dissecting the cortical microcircuitry that underlies this form of LTP. We found that repeated pairing of Pom thalamocortical and intracortical pathway activity in brain slices induces NMDAr-dependent LTP of the L2/3 synapses that are driven by the intracortical pathway. Repeated pairing also recruits activity of vasoactive intestinal peptide (VIP) interneurons, whereas it reduces the activity of somatostatin (SST) interneurons. VIP interneuron-mediated inhibition of SST interneurons has been established as a motif for the disinhibition of pyramidal neurons. By chemogenetic interrogation we found that activation of this disinhibitory microcircuit motif by higher-order thalamic feedback is indispensable for eliciting LTP. Preliminary results in vivo suggest that VIP neuron activity also increases during sensory-evoked LTP. Together, this suggests that the higherorder thalamocortical feedback may help modifying the strength of synaptic circuits that process first-order sensory information in S1. To start characterizing the relationship between higher-order feedback and cortical plasticity during learning in vivo, we adapted a perceptual learning paradigm in which head-fixed mice have to discriminate two types of textures in order to obtain a reward. POm axons or L2/3 pyramidal neurons labeled with the genetically encoded calcium indicator GCaMP6s were imaged during the acquisition of this task as well as the subsequent learning of a new discrimination rule. We found that a subpopulation of the POm axons and L2/3 neurons dynamically represent textures. Moreover, upon a change in reward contingencies, a fraction of the L2/3 neurons re-tune their selectivity to the texture that is newly associated with the reward. Altogether, our data indicates that higher-order thalamic feedback can facilitate synaptic plasticity and may be implicated in dynamic sensory stimulus representations in S1, which depends on higher-order features that are associated with the stimuli.

SeminarNeuroscience

Abstraction and Inference in the Prefrontal Hippocampal Circuitry

Tim Behrens
Oxford University
Mar 17, 2021

The cellular representations and computations that allow rodents to navigate in space have been described with beautiful precision. In this talk, I will show that some of these same computations can be found in humans doing tasks that appear very different from spatial navigation. I will describe some theory that allows us to think about spatial and non-spatial problems in the same framework, and I will try to use this theory to give a new perspective on the beautiful spatial computations that inspired it. The overall goal of this work is to find a framework where we can talk about complicated non-spatial inference problems with the same precision that is only currently available in space.

SeminarNeuroscienceRecording

Thinking the Right Thoughts

Nathaniel Daw
Princeton University
Mar 3, 2021

In many learning and decision scenarios, especially sequential settings like mazes or games, it is easy to state an objective function but difficult to compute it, for instance because this can require enumerating many possible future trajectories. This, in turn, motivates a variety of more tractable approximations which then raise resource-rationality questions about whether and when an efficient agent should invest time or resources in computing decision variables more accurately. Previous work has used a simple all-or-nothing version of this reasoning as a framework to explain many phenomena of automaticity, habits, and compulsion in humans and animals. Here, I present a more finegrained theoretical analysis of deliberation, which attempts to address not just whether to deliberate vs. act, but which of many possible actions and trajectories to consider. Empirically, I first motivate and compare this account to nonlocal representations of spatial trajectories in the rodent place cell system, which are thought to be involved in planning. I also consider its implications, in humans, for variation over time and situations in subjective feelings of mental effort, boredom, and cognitive fatigue. Finally, I present results from a new study using magnetoencephalography in humans to measure subjective consideration of possible trajectories during a sequential learning task, and study its relationship to rational prioritization and to choice behavior.

SeminarNeuroscienceRecording

Sensory and metasensory responses during sequence learning in the mouse somatosensory cortex

Miguel Maravall
University of Sussex
Feb 22, 2021

Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. Touch is one sensory modality where temporal patterning carries key information, and the rodent whisker system is a prominent model for understanding neuronal coding and plasticity underlying touch sensation. Neurons in this system are precise encoders of fluctuations in whisker dynamics down to a timescale of milliseconds, but it is not clear whether they can refine their encoding abilities as a result of learning patterned stimuli. For example, can they enhance temporal integration to become better at distinguishing sequences? To explore how cortical coding plasticity underpins sequence discrimination, we developed a task in which mice distinguished between tactile ‘word’ sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory “barrel” cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal’s action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal’s learnt action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were already found in naïve mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf sequence learning results in neurons whose activity reflects the learnt association between target sequence and licking, rather than a refined representation of sensory features. Taken together with results from other laboratories, our findings suggest that neurons in sensory cortex are involved in task-specific processing and that an animal does not sense the world independently of what it needs to feel in order to guide behaviour.

SeminarNeuroscienceRecording

Experience-dependent remapping of temporal encoding by striatal ensembles

Austin Bruce
University of Iowa, USA
Feb 16, 2021

Medium-spiny neurons (MSNs) in the striatum are required for interval timing, or the estimation of the time over several seconds via a motor response. We and others have shown that striatal MSNs can encode the duration of temporal intervals via time-dependent ramping activity, progressive monotonic changes in firing rate preceding behaviorally salient points in time. Here, we investigated how timing-related activity within striatal ensembles changes with experience. We leveraged a rodent-optimized interval timing task in which mice ‘switch’ response ports after an amount of time has passed without reward. We report three main results. First, we found that the proportion of MSNs exhibiting time-dependent modulations of firing rate increased after 10 days of task overtraining. Second, temporal decoding by MSN ensembles increased with experience and was largely driven by time-related ramping activity. Finally, we found that time-related ramping activity generalized across both correct and error trials. These results enhance our understanding of striatal temporal processing by demonstrating that time-dependent activity within MSN ensembles evolves with experience and is dissociable from motor- and reward-related processes.

SeminarNeuroscience

Sex-Specific Brain Transcriptional Signatures in Human MDD and their Correlates in Mouse Models of Depression

Benoit Labonté
Université Laval & Centre de Recherche CERVO, Québec, Canada
Feb 11, 2021

Major depressive disorder (MDD) is a sexually dimorphic disease. This sexual dimorphism is believed to result from sex-specific molecular alterations affecting functional pathways regulating the capacity of men and women to cope with daily life stress differently. Transcriptional changes associated with epigenetic alterations have been observed in the brain of men and women with depression and similar changes have been reported in different animal models of stress-induced depressive-like behaviors. In fact, most of our knowledge of the biological basis of MDD is derived from studies of chronic stress models in rodents. However, while these models capture certain aspects of the features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown and the functional consequences of these changes on the neuronal networks controlling stress responses are poorly understood. During this presentation, we will first address the extent by which transcriptional signatures associated with MDD compares in men and women. We will then transition to the capacity of different mouse models of chronic stress to recapitulate some of the transcriptional alterations associated with the expression of MDD in both sexes. Finally, we will briefly elaborate on the functional consequences of these changes at the neuronal level and conclude with an integrative perspective on the contribution of sex-specific transcriptional profiles on the expression of stress responses and MDD in men and women.

SeminarNeuroscienceRecording

Modelling affective biases in rodents: behavioural and computational approaches

Claire Hales
Robinson lab, University of Bristol
Feb 9, 2021

My research focuses, broadly speaking, on how emotions impact decision making. Specifically, I am interested in affective biases, a phenomenon known to be important in depression. Using a rodent decision-making task, combined with computational modelling I have investigated how different antidepressant and pro-depressant manipulations that are known to alter mood in humans alter judgement bias, and provided insight into the decision processes that underlie these behaviours. I will also highlight how the combination of behaviour and modelling can provide a truly translation approach, enabling comparison and interpretation of the same cognitive processes between animal and human research.

SeminarNeuroscienceRecording

Mice alternate between discrete strategies during perceptual decision-making

Zoe Ashwood
Pillow lab, Princeton University
Feb 9, 2021

Classical models of perceptual decision-making assume that animals use a single, consistent strategy to integrate sensory evidence and form decisions during an experiment. In this talk, I aim to convince you that this common view is incorrect. I will show results from applying a latent variable framework, the “GLM-HMM”, to hundreds of thousands of trials of mouse choice data. Our analysis reveals that mice don’t lapse. Instead, mice switch back and forth between engaged and disengaged behavior within a single session, and each mode of behavior lasts tens to hundreds of trials.

SeminarNeuroscience

Safety in numbers: how animals use motion of others as threat or safety cues

Marta Moita
Champalimaud Centre for the Unknown
Feb 2, 2021

Our work concerns the general problem of adaptive behaviour in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behaviour in rodents, but how contextual information is integrated to guide this choice is still far from understood. The social environment is a potent contextual modulator of defensive behaviours of animals in a group. Indeed, anti-predation strategies are believed to be a major driving force for the evolution of sociality. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. In this talk, I will discuss our work on how flies process contextual cues, focusing on the social environment, to guide their behavioural response to a threat. We have identified a social safety cue, resumption of activity, and visual projection neurons involved in processing this cue. Given the knowledge regarding sensory detection of looming threats and descending neuron involved in the expression of freezing, we are now in a unique position to understand how information about a threat is integrated with cues from the social environment to guide the choice of whether to freeze.

SeminarNeuroscience

Role of Oxytocin in regulating microglia functions to prevent brain damage of the developing brain

Olivier Baud
Division of Neonatology, Department of Pediatrics, Development and growth laboratory, University of Geneva, Switzerland
Feb 1, 2021

Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders in more than 9 million children each year. Both prematurity and IUGR are associated with perinatal systemic inflammation, a key factor associated with neuroinflammation and identified to be the best predictor of subsequent neurological impairments. Most of pharmacological candidates have failed to demonstrate any beneficial effect to prevent perinatal brain damage. In contrast, environmental enrichment based on developmental care, skin-to-skin contact and vocal/music intervention appears to confer positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the perinatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. Excessive cortisol release in response to perinatal stress induces pro-inflammatory and brain-programming effects. These deleterious effects are known to be balanced by Oxytocin (OT), a neuropeptide playing a key role during the perinatal period and parturition, in social behavior and regulating the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with perinatal brain damage, we recently reported that Carbetocin, a brain permeable long-lasting OT receptor (OTR) agonist, was associated with a significant reduction of activated microglia, the primary immune cells of the brain. Moreover this reduced microglia reactivity was associated to a long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the causality between the endogenous OT and central inflammation response to injury has not been established and will be further studied by the lab.

SeminarNeuroscienceRecording

Social transmission of maternal behavior

Ioana Carcea
Rutgers University
Dec 10, 2020

Maternal care is profoundly important for mammalian survival, and in many species requires the contribution of non-biological parents, or alloparents. In the absence of partum and post-partum related hormonal changes, alloparents acquire maternal skills from experience, by yet unknown mechanisms. One critical molecular signal for maternal behavior is oxytocin, a hormone centrally released by hypothalamic paraventricular nucleus (PVN). Do experiences that induce maternal behavior act by engaging PVN oxytocin neurons? To answer this, we used virgin female mice, animals that in the wild live in colonies with experienced mothers and their pups, helping with pup care. We replicated this setup in the lab, and we continuously monitored homecage behavior of virgin mice co-housed for days with a mother and litter, synchronized with recordings from virgin PVN cells, including from oxytocin neurons. Mothers engaged virgins in maternal care in part by shepherding virgins towards the nest, ensuring their proximity to pups, and in part by self-generating pup retrieval episodes, demonstrating maternal behavior to virgins. The frequency of shepherding and of dam retrievals correlates with virgin's subsequent ability to retrieve pups, a quintessential mouse maternal skill. These social interactions activated virgin PVN and gated behaviorally-relevant cortical plasticity for pup vocalizations. Thus, rodents can acquire maternal behavior by social transmission, and our results describe a mechanism for adapting brains of adult caregivers to infant needs via endogenous oxytocin.

SeminarNeuroscience

Study of sensory "prior distributions" in rodent models of working memory and perceptual decision making

Athena Akrami
University College London, Sainsbury Wellcome Centre, London, U.K.
Dec 8, 2020
SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 19, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

SeminarNeuroscience

Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse

Arkarup Banerjee
NYU Langone medical center
Sep 8, 2020

Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.

SeminarNeuroscience

Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent Visual Cortex

Gina Turrigiano
Brandeis University
Jul 20, 2020

Neocortical networks must generate and maintain stable activity patterns despite perturbations induced by learning and experience- dependent plasticity. There is abundant theoretical and experimental evidence that network stability is achieved through homeostatic plasticity mechanisms that adjust synaptic and neuronal properties to stabilize some measure of average activity, and this process has been extensively studied in primary visual cortex (V1), where chronic visual deprivation induces an initial drop in activity and ensemble average firing rates (FRs), but over time activity is restored to baseline despite continued deprivation. Here I discuss recent work from the lab in which we followed this FR homeostasis in individual V1 neurons in freely behaving animals during a prolonged visual deprivation/eye-reopening paradigm. We find that - when FRs are perturbed by manipulating sensory experience - over time they return precisely to a cell-autonomous set-point. Finally, we find that homeostatic plasticity is perturbed in a mouse model of Autism spectrum disorder, and this results in a breakdown of FRH within V1. These data suggest that loss of homeostatic plasticity is one primary cause of excitation/inhibition imbalances in ASD models. Together these studies illuminate the role of stabilizing plasticity mechanisms in the ability of neocortical circuits to recover robust function following challenges to their excitability.

ePoster

Computational mechanisms of odor perception and representational drift in rodent olfactory systems

Alexander Roxin, Licheng Zou

Bernstein Conference 2024

ePoster

The geometry of cortical representations of touch in rodents

COSYNE 2022

ePoster

The geometry of cortical representations of touch in rodents

COSYNE 2022

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

The rodent medial prefrontal cortex is composed of functionally distinct subregions

COSYNE 2022

ePoster

The rodent medial prefrontal cortex is composed of functionally distinct subregions

COSYNE 2022

ePoster

A virtual rodent predicts the structure of neural activity across natural behavior

COSYNE 2022

ePoster

A virtual rodent predicts the structure of neural activity across natural behavior

COSYNE 2022

ePoster

Exploring the role of image domains in self-supervised DNN models of the rodent brain

Aaditya Prasad, Uri Manor, Talmo Pereira

COSYNE 2023

ePoster

Adinazolam, a benzodiazepine-type new psychoactive substance, produces reinforcement and dependence in rodents

Youyoung Lee, Wun-A Kook, Audrey Lynn Donio, Choon Gon Jang

FENS Forum 2024

ePoster

AI-assisted annotation of rodent behaviors: Collaboration of the human observer and SmartAnnotator software through active learning

Lucas Noldus, Elsbeth van Dam, Loes Ottink, Ruud Tegelenbosch, Marcel van Gerven

FENS Forum 2024

ePoster

Altered activities of antioxidant enzymes in peripheral organs and erythrocytes due to social isolation in peripuberty: Findings from a rodent study

Milica Potrebić, Teodora Vidonja Uzelac, Željko Pavković, Aleksandra Nikolić Kokić, Zorana Oreščanin Dušić, Olga Dubljević, Maja Srbovan, Duško Blagojević, Vesna Pešić

FENS Forum 2024

ePoster

Awake rat MRI scanning - A contribution to the AwakeRodent multi-center, multi-species, multi-modality study

Andrew Breen, Daniel McLoone, Marie Galteau, Joanes Grandjean, Clare Kelly, Andrew Harkin

FENS Forum 2024

ePoster

Behavioral, electrophysiological and enzymatic characterization of new preclinical rodent model exposed to different sub-lethal doses of soman

Rosalie Bel, Assia Belkebir, Lucie Lepinard, Alexandre Champault, Julie Knoertzer, Karine Thibault, Grégory Dal Bo

FENS Forum 2024

ePoster

Characterization of the cerebral dopamine neurotrophic factor (CDNF) in nucleus accumbens of rodents

Merce Correa, Carla Carratala-Ros, Paula Matas-Navarro, Andrea Martínez-Verdú, Regulo Olivares-Garcia, Edgar Arias-Sandoval, John D. Salamone

FENS Forum 2024

ePoster

Chronic ototoxicity induces downregulation of hair cell-specific genes in the vestibular sensory epithelium of rodents

Mireia Borrajo, Alberto Maroto, Erin A. Greguske, Aïda Palou, Marta Gut, Anna Esteve-Codina, Beatriz Martin-Mur, Alejandro Barrallo-Gimeno, Jordi Llorens

FENS Forum 2024

ePoster

Comparative analysis of oscillatory dynamics in the human and rodent brains

Adrien Causse, Jonathan Curot, Amaury De Barros, Luc Valton, Marie Denuelle, Jean-Albert Lotterie, Sara Fernandez-Vidal, Timothy Denison, Emmanuel J. Barbeau, Leila Reddy, David Dupret

FENS Forum 2024

ePoster

α5-containing nicotinic acetylcholine receptors are important modulators of aggressive and dominant-like behaviors in rodents and humans

Fabrice De Chaumont, Romain Icick, Philip Gorwood, Sylvie Granon, Benoî Forget, Chloé Bouarab, Julia Mattioni, Cécile Saint-Cloment, Thomas Bourgeron, Uwe Maskos, Nicolas Ramoz, Morgane Besson

FENS Forum 2024

ePoster

Differences in the frequency-dependency of LTP and LTD at lateral and medial perforant path synapses in rodent dentate gyrus reflect distinct roles in information encoding

Jens Colitti-Klausnitzer, Hardy Hagena, Valentyna Dubovyk, Denise Manahan-Vaughan

FENS Forum 2024

ePoster

Distribution of rodent cerebellar glycogen and its role in motor behavior

Ashley Bomin Lee, Sonam Akther, Ayumu Konno, Antonios Asiminas, Marta Vittani, Tsuneko Mishima, Hirokazu Hirai, Claire Meehan, Jordi Duran, Joan Guinovart, Hitoshi Ashida, Tsuyoshi Morita, Otto Baba, Ryuichi Shigemoto, Maiken Nedergaard, Hajime Hirase

FENS Forum 2024

ePoster

Diversity of cortical spindles in rodents: A role for experience encoding?

Annie Durand-Marandi, Yuqi Li, Ole Paulsen, Audrey Hay

FENS Forum 2024

ePoster

An ergonomic rodent head fixation apparatus for closed-loop cursor control

Halise Erten, Hasan Berke Bilki, Hilal Bulut, Bihter Özhan, Ahsan Ayyaz, Mehmet Kocatürk

FENS Forum 2024

ePoster

Evaluation of optogenetic gene therapy for hearing restoration in in vivo rodent models of sensorineural hearing loss

Victoria Hunniford, Maria Zerche, Bettina Wolf, Kathrin Kusch, Thomas Mager, Tobias Moser

FENS Forum 2024

ePoster

Evidence of prodromal neuronal hyperexcitability and neuroinflammation in a rodent model of human alpha-synucleinopathy

Ibtisam Al Musawi, Gavin Clowry, Fiona Lebeau

FENS Forum 2024

ePoster

FreiControl: A cost-efficient, open-source system for investigating individual strategies in decision making of rodents

Artur Schneider, Julian Graef, Ilka Diester

FENS Forum 2024

ePoster

A fully flexible, open-source, Python-based rodent behavior platform

Alexander Wallerus, Sofia Castro E Almeida, Aron Koszeghy, Arsenii Petryk, Maja Überegger, Johannes Passecker

FENS Forum 2024

ePoster

The impact of memory consolidation on REM sleep architecture in rodents: An insight into phasic and tonic substates

Abdelrahman (Abdel) Rayan, Irene Navarro-Lobato, Adrian Aleman Zapata, Anumita Samanta, Lisa Genzel

FENS Forum 2024

ePoster

The importance of housing conditions in implementing the sex as a biological variable (SABV) policy in neuroscience rodent research

Ivana Jaric, Océane La Loggia, Jovana Malikovic, Marc W Schmid, Janja Novak, Bernhard Voelkl, Irmgard Amrein, Hanno Würbel

FENS Forum 2024

ePoster

Investigating changes in interneurons and perineuronal nets in a rodent model of alpha-synucleinopathy

Anastasia Dimitriou, Bethany Dennis, Gavin Clowry, Fiona LeBeau

FENS Forum 2024

ePoster

A midline thalamic nucleus promotes compulsive-like self-grooming in rodents

Romeo CW Goh, Mingdao Mu, Ya Ke, Wing-Ho Yung

FENS Forum 2024

ePoster

Network-level disruptions in vulnerable individuals contribute to enhanced fear generalization in a rodent model of PTSD

Robert Daniel Marothy, Gyula Y. Balla, László Szente, Manó Aliczki, Máté Tóth, Éva Mikics

FENS Forum 2024

ePoster

A novel 3D-printed micro-drive system for infrared neuromodulation and electrophysiological recording in freely roaming rodents

Ákos Mórocz, Ágoston Csaba Horváth, Zsófia Balogh-Lantos, Richárd Fiáth, Zoltán Fekete

FENS Forum 2024

ePoster

Prefrontal orchestration: Cortical networks for rodent action control

Zoe Jäckel, Niels Schwaderlapp, Ahmed Adzemovic, Florian Steenbergen, Maxim Zaitsev, Ilka Diester

FENS Forum 2024

ePoster

Remarkably precise sound duration discrimination in rodents: Behavioral and neuronal insights from a naturalistic paradigm

Miguel Bengala, Valentin R. Winhart, Gökce Dogu, Andrey Sobolev, Benedikt Grothe, Dardo N. Ferreiro, Michael Pecka

FENS Forum 2024

ePoster

Rodent propionic acid model of autism: Emotional and ultrastructural changes in rat amygdala

Pikria Khomasuridze, Giorgi Lobzhanidze, Nadezhda Japaridze, Mzia Zhvania, Fuad Rzayev, Eldar Gasimov

FENS Forum 2024

ePoster

Rodent propionic acid model of autism: Synaptic architecture of the hippocampus and prefrontal cortex

Mzia Zhvania, Nadezhda Japaridze, Giorgi Lobzhanidze, Nino Pochkhidze, Pikria Khomasuridze

FENS Forum 2024

ePoster

Understanding the altered brain metabolism and oxidative stress: Insights into metabolic syndrome and premature aging in a novel obese rodent model

Jitendra Kumar Sinha, Shampa Ghosh, Krishna Kumar Singh, Manchala Raghunath

FENS Forum 2024

ePoster

Unraveling the role of paraventricular thalamic glucagon-like peptide-1 receptors on alcohol-related behaviors in rodents

Cajsa Aranäs, Christian E Edvardsson, Witley Sarah, Elisabet Jerlhag

FENS Forum 2024

ePoster

Wireless headstage controlled via Bluetooth for closed-loop optogenetics experiments in rodents

Patrícia Silva, Margarida Falcão, Mafalda Abrantes, Francisco Neves, Tiago Pereira, Jérôme Borme, Pedro Alpuim, Patricia Monteiro, Luis Jacinto

FENS Forum 2024