Spindles
spindles
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
Multimodal investigation of the associations between sleep and Alzheimer's disease neuropathology in healthy individuals
Alterations in sleep are hallmarks of the ageing process and emerges as risk factors for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD-related processes is not fully established. We investigated whether sleep arousals and the coupling of spindles and slow waves, key elements of sleep microstructure, are associated with early amyloid-beta (Aβ) brain burden, hallmark of AD neuropathology, and cognitive change at 2 years in 100 late-midlife healthy individuals. We first found that arousals interrupting sleep continuity were positively linked to Aβ burden, while, by contrast, the more prevalent arousals upholding sleep continuity were associated with lower Aβ burden and better cognition. We further found that young-like co-occurrence of spindles and slow-depolarisation slow waves is associated to lower burden of Aβ over the medial prefrontal cortex and is predictive of memory decline at 2-year follow-up. We provide empirical evidence that arousals are diverse and differently associated with early AD-related neuropathology and cognition. We further show the altered coupling of sleep microstructure elements that are key to its mnesic functions may contribute to poorer brain and cognitive trajectories. The presentation will end with preliminary data show that activity of the locus coeruleus, essential to sleep and showing some of the earliest signs of AD-related pathological processes, is associated with sleep quality. These preliminary findings are the first of a project ailed at link sleep and AD through the locus coeruleus.
The role of the complement pathway in post-traumatic sleep disruption and epilepsy
While traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild cortical injury that does not directly damage subcortical structures (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic circuit. Increased C1q expression co-localized with neuron loss and chronic inflammation, and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are the source of thalamic C1q. Since the corticothalamic circuit is important for cognition and sleep, which can be impaired by TBI, this circuit could be a new target for treating TBI-related disabilities
Local sleep regulation and its implications for cognition and brain plasticity
Sleep has been classically described as an all-or-nothing global phenomenon. However, a growing body of evidence indicates that typical sleep hallmarks, such as slow waves and spindles, occur and are regulated locally. I will present here evidence indicating that slow waves, in particular, may be related with, and offer a read-out of, local and long-range brain connectivity. In fact, slow waves do not only track changes related to both experience-dependent plasticity and brain maturation during development, but also appear to be actively involved in the fine regulation of brain plasticity and in the removal of metabolic wastes. I will also show that, consistent with a local regulation of sleep, slow waves can often occur locally during wakefulness, with an incidence that varies as a function of time spent awake and of previous rest. These waking slow waves are associated with impaired performance during cognitive tasks and may contribute to explain attention lapses and errors commonly associated with insufficient sleep.
How sleep remodels the brain
50 years ago it was found that sleep somehow made memories better and more permanent, but neither sleep nor memory researchers knew enough about sleep and memory to devise robust, effective tests. Today the fields of sleep and memory have grown and what is now understood is astounding. Still, great mysteries remain. What is the functional difference between the subtly different slow oscillation vs the slow wave of sleep and do they really have opposite memory consolidation effects? How do short spindles (e.g. <0.5 s as in schizophrenia) differ in function from longer ones and are longer spindles key to integrating new memories with old? Is the nesting of slow oscillations together with sleep spindles and hippocampal ripples necessary? What happens if all else is fine but the neurochemical environment is altered? Does sleep become maladaptive and “cement” memories into the hippocampal warehouse where they are assembled, together with all of their emotional baggage? Does maladaptive sleep underlie post-traumatic stress disorder and other stress-related disorders? How do we optimize sleep characteristics for top emotional and cognitive function? State of the art findings and current hypotheses will be presented.
Cortex-wide high density ECoG recordings from rat reveal diverse generators of sleep-spindles with characteristic anatomical topographies and non-stationary subcycle dynamics
Bernstein Conference 2024
Diversity of cortical spindles in rodents: A role for experience encoding?
FENS Forum 2024
Molecular characterization of muscle spindles, Golgi tendon organs, and palisade endings in pig eye muscles
FENS Forum 2024
Thalamocortical spindles occur during rapid eye movement sleep in mouse somatosensory pathway
FENS Forum 2024