World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Graduate Student
Johns Hopkins University
Showing your local timezone
Schedule
Tuesday, November 30, 2021
5:30 PM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Neuromatch 4
Seminar location
No geocoded details are available for this content yet.
Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.
Benjamin Pedigo (he/him)
Graduate Student
Johns Hopkins University
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe