Brain Structure
brain structure
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury
Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..
Neural architectures: what are they good for anyway?
The brain has a highly complex structure in terms of cell types and wiring between different regions. What is it for, if anything? I'll start this talk by asking what might an answer to this question even look like given that we can't run an alternative universe where our brains are structured differently. (Preview: we can do this with models!) I'll then talk about some of our work in two areas: (1) does the modular structure of the brain contribute to specialisation of function? (2) how do different cell types and architectures contribute to multimodal sensory processing?
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
Mitochondrial diversity in the mouse and human brain
The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.
Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders
In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Bio-realistic multiscale modeling of cortical circuits
A central question in neuroscience is how the structure of brain circuits determines their activity and function. To explore this systematically, we developed a 230,000-neuron model of mouse primary visual cortex (area V1). The model integrates a broad array of experimental data:Distribution and morpho-electric properties of different neuron types in V1.
Spatial and Single Cell Genomics for Next Generation Neuroscience
The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections. In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution. Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures. I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types. Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.
Developmentally structured coactivity in the hippocampal trisynaptic loop
The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.
Four questions about brain and behaviour
Tinbergen encouraged ethologists to address animal behaviour by answering four questions, covering physiology, adaptation, phylogeny, and development. This broad approach has implications for neuroscience and psychology, yet, questions about phylogeny are rarely considered in these fields. Here I describe how phylogeny can shed light on our understanding of brain structure and function. Further, I show that we now have or are developing the data and analytical methods necessary to study the natural history of the human mind.
Brain chart for the human lifespan
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.
Astrocytes and oxytocin interaction regulates amygdala neuronal network activity and related behaviors”
Oxytocin orchestrates social and emotional behaviors through modulation of neural circuits in brain structures such as the central amygdala (CeA). In this structure, the release of oxytocin modulates inhibitory circuits and subsequently suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function approaches and pharmacology, we demonstrate that oxytocin signaling in the central amygdala relies on a subpopulation of astrocytes that represent a prerequisite for proper function of CeA circuits and adequate behavioral responses, both in rats and mice. Our work identifies astrocytes as crucial cellular intermediaries of oxytocinergic modulation in emotional behaviors related to anxiety or positive reinforcement. To our knowledge, this is the first demonstration of a direct role of astrocytes in oxytocin signaling and challenges the long-held dogma that oxytocin signaling occurs exclusively via direct action on neurons in the central nervous system.
Get more from your ISH brain slices with Stalefish
The standard method for staining structures in the brain is to slice the brain into 2D sections. Each slice is treated using a technique such as in-situ hybridization to examine the spatial expression of a particular molecule at a given developmental timepoint. Depending on the brain structures being studied, slices can be made coronally, sagitally, or at any angle that is thought to be optimal for analysis. However, assimilating the information presented in the 2D slice images to gain quantitiative and informative 3D expression patterns is challenging. Even if expression levels are presented as voxels, to give 3D expression clouds, it can be difficult to compare expression across individuals and analysing such data requires significant expertise and imagination. In this talk, I will describe a new approach to examining histology slices, in which the user defines the brain structure of interest by drawing curves around it on each slice in a set and the depth of tissue from which to sample expression. The sampled 'curves' are then assembled into a 3D surface, which can then be transformed onto a common reference frame for comparative analysis. I will show how other neuroscientists can obtain and use the tool, which is called Stalefish, to analyse their own image data with no (or minimal) changes to their slice preparation workflow.
Spatio-temporal large-scale organization of the trimodal connectome derived from concurrent EEG-fMRI and diffusion MRI
While time-averaged dynamics of brain functional connectivity are known to reflect the underlying structural connections, the exact relationship between large-scale function and structure remains an unsolved issue in network neuroscience. Large-scale networks are traditionally observed by correlation of fMRI timecourses, and connectivity of source-reconstructed electrophysiological measures are less prominent. Accessing the brain by using multimodal recordings combining EEG, fMRI and diffusion MRI (dMRI) can help to refine the understanding of the spatio-temporal organization of both static and dynamic brain connectivity. In this talk I will discuss our prior findings that whole-brain connectivity derived from source-reconstructed resting-state (rs) EEG is both linked to the rs-fMRI and dMRI connectome. The EEG connectome provides complimentary information to link function to structure as compared to an fMRI-only perspective. I will present an approach extending the multimodal data integration of concurrent rs-EEG-fMRI to the temporal domain by combining dynamic functional connectivity of both modalities to better understand the neural basis of functional connectivity dynamics. The close relationship between time-varying changes in EEG and fMRI whole-brain connectivity patterns provide evidence for spontaneous reconfigurations of the brain’s functional processing architecture. Finally, I will talk about data quality of connectivity derived from concurrent EEG-fMRI recordings and how the presented multimodal framework could be applied to better understand focal epilepsy. In summary this talk will give an overview of how to integrate large-scale EEG networks with MRI-derived brain structure and function. In conclusion EEG-based connectivity measures not only are closely linked to MRI-based measures of brain structure and function over different time-scales, but also provides complimentary information on the function of underlying brain organization.
A role for cognitive maps in metaphors and analogy?
In human and non-human animals, conceptual knowledge is partially organized according to low-dimensional geometries that rely on brain structures and computations involved in spatial representations. Recently, two separate lines of research have investigated cognitive maps, that are associated with the hippocampal formation and are similar to world-centered representations of the environment, and image spaces, that are associated with the parietal cortex and are similar to self-centered spatial relationships. I will suggest that cognitive maps and image spaces may be two manifestations of a more general propensity of the mind to create low-dimensional internal models, and may play a role in analogical reasoning and metaphorical thinking. Finally, I will show some data suggesting that the metaphorical relationship between colors and emotions can be accounted for by the structural alignment of low-dimensional conceptual spaces.
Regenerative Neuroimmunology - a stem cell perspective
There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.
The neuroecological context of group living
Dr. Sean O'Donnell is a Professor of Biodiversity Earth & Environmental Science at Drexel University, USA. His neuroscience research focuses on how brain structure plasticity & evolution are affected by social behavior, mainly using insects as models. He is also interested in tropical ecology & thermal physiology. He conducts field research & teaches field courses in Central & South America, as well as in the Negev Desert in Israel.
Cortical and subcortical grey matter micro-structure is associated with polygenic risk for schizophrenia
Background: Recent discovery of hundreds of common gene variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. It is hypothesized that normal variation in genetic risk of schizophrenia should be associated with MRI changes in brain morphometry and tissue composition. Methods: We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macro-structural MRI metrics measured at each of 180 cortical areas and seven subcortical structures. Linear mixed effect models were used to investigate associations between schizophrenia PRS and brain structure at global and regional scales, controlled for multiple comparisons. Results: Micro-structural phenotypes were more robustly associated with schizophrenia PRS than macro-structural phenotypes. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, and five subcortical structures. Other micro-structural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with schizophrenia PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate and prefrontal cortical areas, insula, and hippocampus. (Preprint: https://www.medrxiv.org/content/10.1101/2021.02.06.21251073v1)
A distinct subcircuit in medial entorhinal cortex mediates learning of interval timing behavior during immobility
Over 60 years of research has established that medial temporal lobe structures, including the hippocampus and entorhinal cortex, are necessary for the formation of episodic memories (i.e. memories of specific personal events that occur in spatial and temporal context). While prior work to establish the neural mechanisms underlying episodic memory has largely focused on questions related spatial context, recently we have begun to investigate how these brain structures could be involved in encoding aspects of temporal context. In particular, we have focused on how medial entorhinal cortex, a structure well known for its role in spatial memory, may also be involved in encoding interval time. To answer this question we have developed an instrumental paradigm for head-fixed mice that requires both immobile interval timing and locomotion-dependent navigation behavior. By combining this behavioral paradigm with large-scale cellular resolution functional imaging and optogenetic-mediated inactivation, our results suggest that MEC is required for learning of interval timing behavior and that interval timing could be mediated through regular, sequential neural activity of a distinct subpopulation of neurons in MEC that encode elapsed time during periods of immobility (Heys and Dombeck, 2018; Heys et al, 2020; Issa et al., 2020). In this talk, I will discuss these findings and discuss our on-going work to investigate the principles underlying the role of medial temporal lobe structures in timing behavior and episodic memory.
What is Foraging?
Foraging research aims at describing, understanding, and predicting resource-gathering behaviour. Optimal Foraging Theory (OFT) is a sub-discipline that emphasises that these aims can be aided by segmenting foraging behaviour into discrete problems that can be formally described and examined with mathematical maximization techniques. Examples of such segmentation are found in the isolated treatment of issues such as patch residence time, prey selection, information gathering, risky choice, intertemporal decision making, resource allocation, competition, memory updating, group structure, and so on. Since foragers face these problems simultaneously rather than in isolation, it is unsurprising that OFT models are ‘always wrong but sometimes useful’. I will argue that a progressive optimal foraging research program should have a defined strategy for dealing with predictive failure of models. Further, I will caution against searching for brain structures responsible for solving isolated foraging problems.
Arousal modulates retinal output
Neural responses in the visual system are usually not purely visual but depend on behavioural and internal states such as arousal. This dependence is seen both in primary visual cortex (V1) and in subcortical brain structures receiving direct retinal input. In this talk, I will show that modulation by behavioural state arises as early as in the output of the retina.To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superficial superior colliculus (sSC) of mice. The activity of about half of the boutons depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced the boutons’ visual responses to preferred direction and their selectivity for direction and orientation.Arousal may affect activity in retinal boutons by presynaptic neuromodulation. To test whether the effects of arousal occur already in the retina, we recorded from retinal axons in the optic tract. We found that, in darkness, more than one third of the recorded axons was significantly correlated with running speed. Arousal had similar effects postsynaptically, in sSC neurons, independent of activity in V1, the other main source of visual inputs to colliculus. Optogenetic inactivation of V1 generally decreased activity in collicular neurons but did not diminish the effects of arousal. These results indicate that arousal modulates activity at every stage of the visual system. In the future, we will study the purpose and the underlying mechanisms of behavioural modulation in the early visual system
Role of Oxytocin in regulating microglia functions to prevent brain damage of the developing brain
Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders in more than 9 million children each year. Both prematurity and IUGR are associated with perinatal systemic inflammation, a key factor associated with neuroinflammation and identified to be the best predictor of subsequent neurological impairments. Most of pharmacological candidates have failed to demonstrate any beneficial effect to prevent perinatal brain damage. In contrast, environmental enrichment based on developmental care, skin-to-skin contact and vocal/music intervention appears to confer positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the perinatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. Excessive cortisol release in response to perinatal stress induces pro-inflammatory and brain-programming effects. These deleterious effects are known to be balanced by Oxytocin (OT), a neuropeptide playing a key role during the perinatal period and parturition, in social behavior and regulating the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with perinatal brain damage, we recently reported that Carbetocin, a brain permeable long-lasting OT receptor (OTR) agonist, was associated with a significant reduction of activated microglia, the primary immune cells of the brain. Moreover this reduced microglia reactivity was associated to a long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the causality between the endogenous OT and central inflammation response to injury has not been established and will be further studied by the lab.
Sexual dimorphism of microglia
Sex differences in brain structure and function are of substantial scientific interest because of sex-related susceptibility to psychiatric and neurological disorders. Neuroinflammation is a common denominator of many of these diseases and thus microglia as the brain´s immunocompetent and instrumental cells has come into focus in sex specific studies. We and others show that male microglia are more frequent in specific brain areas and appear to have a higher potential to respond to stimuli, whereas female microglia seem to acquire a more “protective” phenotype.
Functional and structural loci of individuality in the Drosophila olfactory circuit
Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioral individuality, because while the neural circuit underlying olfactory behavior is well-described and highly stereotyped, persistent idiosyncrasy in behavior, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioral responses remains unknown. Here, using paired behavior and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behavior and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behavior. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behavior among individuals.
Motion processing across visual field locations in zebrafish
Animals are able to perceive self-motion and navigate in their environment using optic flow information. They often perform visually guided stabilization behaviors like the optokinetic (OKR) or optomotor response (OMR) in order to maintain their eye and body position relative to the moving surround. But how does the animal manage to perform appropriate behavioral response and how are processing tasks divided between the various non-cortical visual brain areas? Experiments have shown that the zebrafish pretectum, which is homologous to the mammalian accessory optic system, is involved in the OKR and OMR. The optic tectum (superior colliculus in mammals) is involved in processing of small stimuli, e.g. during prey capture. We have previously shown that many pretectal neurons respond selectively to rotational or translational motion. These neurons are likely detectors for specific optic flow patterns and mediate behavioral choices of the animal based on optic flow information. We investigate the motion feature extraction of brain structures that receive input from retinal ganglion cells to identify the visual computations that underlie behavioral decisions during prey capture, OKR, OMR and other visually mediate behaviors. Our study of receptive fields shows that receptive field sizes in pretectum (large) and tectum (small) are very different and that pretectal responses are diverse and anatomically organized. Since calcium indicators are slow and receptive fields for motion stimuli are difficult to measure, we also develop novel stimuli and statistical methods to infer the neuronal computations of visual brain areas.
Information and Decision-Making
In recent years it has become increasingly clear that (Shannon) information is a central resource for organisms, akin in importance to energy. Any decision that an organism or a subsystem of an organism takes involves the acquisition, selection, and processing of information and ultimately its concentration and enaction. It is the consequences of this balance that will occupy us in this talk. This perception-action loop picture of an agent's life cycle is well established and expounded especially in the context of Fuster's sensorimotor hierarchies. Nevertheless, the information-theoretic perspective drastically expands the potential and predictive power of the perception-action loop perspective. On the one hand information can be treated - to a significant extent - as a resource that is being sought and utilized by an organism. On the other hand, unlike energy, information is not additive. The intrinsic structure and dynamics of information can be exceedingly complex and subtle; in the last two decades one has discovered that Shannon information possesses a rich and nontrivial intrinsic structure that must be taken into account when informational contributions, information flow or causal interactions of processes are investigated, whether in the brain or in other complex processes. In addition, strong parallels between information and control theory have emerged. This parallelism between the theories allows one to obtain unexpected insights into the nature and properties of the perception-action loop. Through the lens of information theory, one can not only come up with novel hypotheses about necessary conditions for the organization of information processing in a brain, but also with constructive conjectures and predictions about what behaviours, brain structure and dynamics and even evolutionary pressures one can expect to operate on biological organisms, induced purely by informational considerations.
Functional and structural loci of individuality in the Drosophila olfactory circuit
behaviour varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioural individuality, because while the neural circuit underlying olfactory behaviour is well-described and highly stereotyped, persistent idiosyncrasy in behaviour, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioural responses remains unknown. Here, using paired behaviour and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behaviour and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behaviour. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behaviour among individuals.
Dragons, Sleep, and the Claustrum
The mammalian claustrum, by virtue of its dense interconnectivity with cortex and other brain structures, has been hypothesized to mediate functions ranging from decision making to consciousness. I will be presenting experimental evidence for the existence of a claustrum in reptiles, its role in generating brain dynamics characteristic of sleep, and discuss our neuroetholgical approach towards understanding fundamental aspects of sleep and claustrum function.
Cortical circuits for olfactory navigation
Olfactory navigation is essential for the survival of living beings from unicellular organisms to mammals. In the wild, rodents combine odor information with an internal spatial representation of the environment for foraging and navigation. What are the neural circuits in the brain that implement these behaviours? My research addresses this question by examining the synaptic circuits and neural population activity in the olfactory cortex to understand the integration of olfactory and spatial information. Primary olfactory (piriform) cortex (PCx) has long been recognized as a highly associative brain structure. What is the behavioural and functional role of these associative synapses in PCx? We designed an odor-cued navigation task, where rats must use both olfactory and spatial information to obtain water rewards. We recorded from populations of posterior piriform cortex (pPCx) neurons during behaviour and found that individual neurons were not only odor-selective, but also fired differentially to the same odor sampled at different locations, forming an “olfactory place map”. Spatial locations can be decoded from simultaneously recorded pPCx population, and spatial selectivity is maintained in the absence of odors, across behavioural contexts. This novel olfactory place map is consistent with our finding for a dominant role of associative excitatory synapses in shaping PCx representations, and suggest a role for PCx spatial representations in supporting olfactory navigation. This work not only provides insight into the neural basis for how odors can be used for navigation, but also reveals PCx as a prime site for addressing the general question of how sensory information is anchored within memory systems and combined with cognitive maps to guide flexible behaviour.
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
Childhood trauma in the adult brain: The relationship between adverse childhood experiences, brain structure, and mental health in late adulthood
FENS Forum 2024
Development and intergenerational perspectives on corticolimbic brain structures during childhood
FENS Forum 2024
Effects of parenting behaviors on children’s and young adults' emotion regulatory brain structure
FENS Forum 2024
Exposure to maternal pre- and postnatal psychological distress: Effects on brain structure in 5-year-old children
FENS Forum 2024
Investigating risk factors associated with longitudinal changes in brain structure in UK Biobank
FENS Forum 2024